教程概述 本教程分为4个部分; 他们是: 从列表到数组 数组索引 数组切片 数组重塑 1.从列表到数组 一般来说,我建议使用Pandas或NumPy函数从文件加载数据。...有关示例,请参阅帖子: 如何在Python中加载机器学习的数据 本节假定你已经通过其他方式加载或生成了你的数据,现在使用Python列表表示它们。 我们来看看如何将列表中的数据转换为NumPy数组。...一维列表到数组 你可以加载或生成你的数据,并将它看作一个列表来访问。 你可以通过调用NumPy的array()函数将一维数据从列表转换为数组。...这是一个数据表,其中每一行代表一个新的发现,每一列代表一个新的特征。 也许你通过使用自定义代码生成或加载数据,现在你有了二维列表。每个列表表示一个新发现。...,将该数组重塑为具有5行1列的新形状,并输出。
、函数和文件 第 4 章 NumPy 基础:数组和向量计算 第 5 章 pandas 入门 第 6 章 数据加载、存储与文件格式 第 7 章 数据清洗和准备 第 8 章 数据规整:聚合、合并和重塑 第...26 不要走向 3D 27 了解最常用的图像文件格式 28 选择合适的可视化软件 29 讲述一个故事并提出一个观点 30 带注解的参考书目 技术注解 参考 TutorialsPoint NumPy 教程...NumPy 秘籍中文第二版 零、前言 一、使用 IPython 二、高级索引和数组概念 三、掌握常用函数 四、将 NumPy 与世界的其他地方连接 五、音频和图像处理 六、特殊数组和通用函数 七、性能分析和调试...基础知识 零、前言 一、NumPy 简介 二、NumPy ndarray对象 三、使用 NumPy 数组 四、NumPy 核心和子模块 五、NumPy 中的线性代数 六、NumPy 中的傅立叶分析...2.8 面向对象编程 三、关键编程模式 3.1 加载文件 3.2 数据帧 3.3 操纵和可视化数据 四、用于计算和优化的迭代式方法 4.1 生成均匀的随机数 4.2 近似平方根 4.3 单变量梯度下降
import numpy as np 创建数组 我们可以通过传递一个 python 列表并使用 np.array()来创建 NumPy 数组(极大可能是多维数组)。...我们只需传递希望 NumPy 生成的元素数量即可: ? 一旦创建了数组,我们就可以尽情对它们进行操作。 数组运算 让我们创建两个 NumPy 数组来展示数组运算功能。...当需要对两个矩阵执行点乘运算并对齐它们共享的维度时,通常需要进行转置。NumPy 数组有一个方便的方法 T 来求得矩阵转置: ? 在更高级的实例中,你可能需要变换特定矩阵的维度。...这意味着如果你有一个 10 秒的 CD 质量 WAVE 文件,你可以将它加载到长度为 10 * 44,100 = 441,000 的 NumPy 数组中。...如果想要提取音频的第一秒,只需将文件加载到 audio 的 NumPy 数组中,然后获取 audio[:44100]。 以下是一段音频文件: ? 时间序列数据也是如此(如股票价格随时间变化)。
import numpy as np 01 创建数组 我们可以通过传递一个 python 列表并使用 np.array() 来创建 NumPy 数组(极大可能是多维数组)。...我们只需传递希望 NumPy 生成的元素数量即可: ? 一旦创建了数组,我们就可以尽情对它们进行操作。 02 数组运算 让我们创建两个 NumPy 数组来展示数组运算功能。...当需要对两个矩阵执行点乘运算并对齐它们共享的维度时,通常需要进行转置。NumPy 数组有一个方便的方法 T 来求得矩阵转置: ? 在更高级的实例中,你可能需要变换特定矩阵的维度。...这意味着如果你有一个 10 秒的 CD 质量 WAVE 文件,你可以将它加载到长度为 10 * 44,100 = 441,000 的 NumPy 数组中。...如果想要提取音频的第一秒,只需将文件加载到 audio 的 NumPy 数组中,然后获取 audio[:44100]。 以下是一段音频文件: ? 时间序列数据也是如此(如股票价格随时间变化)。
数组索引方式和普通列表不同的一点是可以通过逗号将多个整数作为索引传入以选取单个元素。 4. 数组形状操作 这意味着改变数组的形状,如更改行列数或重塑数组。可以使用reshape()函数改变其尺寸。...矩阵操作 NumPy库针对于形如线性代数矩阵的统一格式进行了广泛实现,它提供大量处理矩阵以及其他数学结构的函数和方法,常用于机器学习、图像与信号处理等领域。 6....) 运行结果: [[1 2 3] [4 5 6]] 解释: 这个示例演示了如何使用.reshape()方法将原始的一维数组重塑为一个二维数组。...使用np.save()函数将数组存储到文件中,并指定保存文件的名称。 使用np.load()函数从文件中加载数组,并将其存储在名为new_arr的新数组变量中。...,然后再次从文件中加载保存的数组,并将其打印为输出。
·学习NumPy(Numerical Python)的基础和高级知识。 ·从pandas库的数据分析工具开始。 ·利用高性能工具对数据进行加载、清理、转换、合并以及重塑。...77 高级IPython功能 79 致谢 81 第4章 NumPy基础:数组和矢量计算 82 NumPy的ndarray:一种多维数组对象 83 通用函数:快速的元素级数组函数 98 利用数组进行数据处理...100 用于数组的文件输入输出 107 线性代数 109 随机数生成 111 范例:随机漫步 112 第5章 pandas入门 115 pandas的数据结构介绍 116 基本功能 126 汇总和计算描述统计...142 处理缺失数据 148 层次化索引 153 其他有关pandas的话题 158 第6章 数据加载、存储与文件格式 162 读写文本格式的数据 162 二进制数据格式 179 使用HTML和Web...高级应用 368 ndarray对象的内部机理 368 高级数组操作 370 广播 378 ufunc高级应用 383 结构化和记录式数组 386 更多有关排序的话题 388 NumPy的matrix类
(张量是一个n维数组或者是一个n-D数组)PyTorch是一个张量库,她紧密地反映了numpy的多维数组功能,并且与numpy本身有着高度的互操作性。...A:因为在神经网络的传递中,会有一个过程叫做reshape(重塑),即在网络中不同的点会有特定的形状,因此我们需要特别在意张量的形状,并在有能力根据需要进行重塑。...(Factories),是指接受参数输入并返回特定类型对象(这里指的是张量对象)的函数,用于创建对象的编程概念(目的是允许更多的动态对象的创建)。...(data) #这是在内存中共享数组的数据,是一个sharet4 = torch.from_numpy(data) #这是在内存中共享数组的数据,是一个sharedata[0] = 0data[1]...因为torch.as_tensor函数可以接受任何Python的数组,torch.from_numpy()的调用只能接受numpy数组。
图像分类是一种机器学习任务,涉及识别图像中的对象或场景。这是一项具有挑战性的任务,但它在面部识别、物体检测和医学图像分析等现实世界中有许多应用。...我们将需要以下模块: numpy:用于处理数组 matplotlib.pyplot:用于绘制图像 TensorFlow:用于构建和训练神经网络。 请考虑下面显示的命令来导入模块。...import numpy as np import matplotlib.pyplot as plt import tensorflow as tf 加载和预处理数据 下一步是加载 Fashion−MNIST... 1) x_test = x_test.reshape(10000, 28, 28, 1) x_train = x_train / 255.0 x_test = x_test / 255.0 此代码将图像重塑为具有第四维...以下代码演示如何生成模型: model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28, 1)),
''' # 生成1个 3*3 的单位矩阵 np.eye(3) 3.生成随机数组:random 模块 随机数组的生成主要用到 NumPy 中的 random 模块。...''' arr = np.array([1,2,3,2,1]) np.unique(arr) 六、Numpy 数组重塑:reshape() 所谓数组重塑就是更改数组的形状,比如将原来3行4列的数组重塑成...返回值: 重塑后的数组。 ''' 1.一维数组重塑 一维数组重塑就是将数组从1行或1列数组重塑为多行多列的数组。...(4,3) # 将数组重塑为 2 行 6 列的多维数组 arr.reshape(2,6) # 同样,只要重塑后数组中值的个数等于1维数组中个数即可。...''' np.intersect1d(arr1,arr2) (3)并集 union1d(数组1,数组2): ''' 功能: 并集。
NumPy 是 Python 编程语言的库,增加了对大型、多维数组和矩阵的支持,以及用于对这些数组进行操作的大量高级数学函数集合 Numpy 还有以下特定 提供用于集成 C/C++ 和 FORTRAN...连接 Array 和 Tensors 的桥梁 将 Torch Tensor 转换为 NumPy 数组,反之亦然是轻而易举 Torch Tensor 和 NumPy 数组将共享它们的底层内存位置,改变一个将同时改变另一个...与 Torch 之间的互转还是非常方便的 实战--训练图像分类器 数据集选择 通常,当我们处理图像、文本、音频或视频数据时,可以使用标准的 Python 包将数据加载到 Numpy 数组中,然后就可以把这个数组转换成一个...专门针对视觉,有一个名为 torchvision 的包,它实现了 Imagenet、CIFAR10、MNIST 等常见数据集的数据加载器和用于图像的数据转换器,这样我们就可以很方便的使用已有数据集进行学习...CIFAR-10 中的图像大小为3x32x32,即32×32像素大小的3通道彩色图像,如下图: 训练 CIFAR10 分类器 首先我们加载和归一化 CIFAR10 使用 torchvision 加载
(图片来源于网络) 1 Numpy ? NumPy是Python语言的一个扩充程序库。支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。... (4)线性代数运算、傅里叶变换,以及随机数生成 (5)用于将C、C++、Fortran代码集成到python的工具 举个栗子: #Numpy简单创建数组 import numpy as...pandas提供了使我们能够快速便捷地处理结构化数据的大量数据结构和函数。pandas兼具Numpy高性能的数组计算功能以及电子表格和关系型数据(如SQL)灵活的数据处理能力。...它提供了复杂精细的索引功能,以便更为便捷地完成重塑、切片和切块、聚合以及选取数据子集等操作。 对于金融行业的用户,pandas提供了大量适用于金融数据的高性能时间序列功能和工具。...举个栗子: import numpy as np import matplotlib.pyplot as plt # x轴对应的值 x = np.linspace(0, 5, 100) # 画图,并设置线形和颜色
Array programming with NumPy Charles et.al. 2020 in Nature NumPy是Python中一个主要的数组编程库,可进行矢量、矩阵和高维数组的数据计算...此外,NumPy也支持一些其他功能,如创建(create)、重塑(reshape)、连接(concatenate)和填充(paddy)数组,数据搜索整理和读写文件等功能,生成随机数等。...不同研究领域也开发出了大型复杂的Python库,如用于绘制出第一张黑洞图像的eht-imaging库,就是在NumPy、SciPy、NetworkX、Astropy和Matplotlib等的支持下实现的...但现今的科学数据对大数据的分布式存储需求,以及面向深度学习和人工智能应用的特殊硬件的出现,如GPU(图像处理单元),TPUs(张量处理单元)和FPGAS(现场可编程门数组),NumPy的内存数据模型无法直接利用这些这种存储和专用硬件...再次强调了NumPy的开源性,并希望更多人加入到NumPy开发社区。在不断的发展过程中,NumPy已不再只是一个小型社区项目了,而是逐渐发展成科学计算的核心基础设施。
然后,在特征映射层中,使用不同组的随机权重生成多个映射特征组,形成特征节点,并通过稀疏BLS方法计算每个窗口的权重和输出。接着,在增强层中,生成增强节点,并计算其输出。...打印特征的形状 iv. 转换张量为 numpy 数组并重塑 v. 使用 matplotlib 显示特征图 vi. 返回提取的特征 5....转换张量为 numpy 数组并重塑 iii. 使用 matplotlib 显示特征图 iv. 返回提取的特征 6. 加载预训练的 EfficientNet 模型 7....将提取的特征转换为 numpy 数组并保存到 features 列表 e. 将特征转换为 numpy 数组并返回 11. 如果是主程序: a....接着,定义了特征提取函数extract,该函数初始化一个空列表用于存储特征,获取图像目录中的文件列表并进行排序,遍历文件列表,加载并预处理每张图像,将预处理后的图像合并为一个批次,移动到GPU,并使用新定义的模型提取特征
--- [e675dd91dee3e55ae01d85458709a7f6.png] n维数组是NumPy的核心概念,大部分数据的操作都是基于n维数组完成的。...本系列内容覆盖到1维数组操作、2维数组操作、3维数组操作方法,本篇讲解Numpy与3维、更高维数组的操作。...有时候我们会使用到3维或者更高维的NumPy数组(比如计算机视觉的应用中),通过重塑1维向量或转换嵌套Python列表来创建3维数组时,索引分别对应(z,y,x)。...根据确定的轴顺序,转置数组平面的命令有所不同:对于通用数组,交换索引1和2,对于RGB图像交换0和1: [4ad2fa93cc381abcb17ab40ce68147bb.png] 注意,transpose...广播机制同样适用多维数组,更多详细信息可参阅笔记“ NumPy中的广播”。
我们通过传入(3,3),将一维数组转换为3行3列的二维数组。然后,代码使用print(a)打印出了重塑后的二维数组a。这将显示形状为3行3列的矩阵,其中的元素为随机生成的整数。...代码r, c = np.where(a == np.max(a))的作用是找到数组a中的最大值,并确定该最大值所在的行和列。...首先,我们随机生成整数数组并对其进行了重塑,与之前相同。然后,我们使用np.argmax(a)函数来找到数组a中的最大值,并返回其在展平(flatten)数组中的索引。...缺点:使用了两次数组重塑操作,可能会带来一定的性能开销,特别是在处理更大的数组时。只考虑了数组中最大值的位置,没有处理多个元素具有相同最大值的情况。...只需要进行一次数组重塑操作。缺点:只能找到最大值的位置,无法处理多个元素具有相同最大值的情况。
提供了高性能的数组对象 提供了大量的函数和方法 NumPy使用机器学习中的操作变得简单 NumPy是通过C语言实现的 NumPy的安装 pip install numpy 数组的分类 一维数组 跟Python... 生成(0,1)之间的随机数组 np.random.rand() 随机生成满足正态分布的数组 np.random.randn() 生成一定范围内的随机数组 np.random.randint...() 生成正态分布的随机数组 np.random.normal() Numpy的数据类型比Python数据类型增加了更多种类的数值类型,为了区别于Python的数据类型,像bool、int...[start:stop:step] start:起始索引 stop:终止索引 step:步长 二维数组索引 语法格式 array[n,m] 二维数组的切片式索引 数组重塑 数组重塑是更改数组的形状...使用reshape方法,用于改变数组的形状 重塑后数组所包含的元素个数必须与原数组的元素个数相同,元素发生变化,程序就会报错 数组转置 数组的行列转换 通过数组的T属性和transpose
NumPy库 NumPy(Numerical Python)是Python中常用的数值计算库,它提供了高性能的多维数组对象和对数组进行操作的函数。...1.多维数组对象(ndarray) (1)NumPy最重要的对象是ndarray,它是一个具有固定大小的数组,可以包含相同类型的元素。...9.数组的随机数生成 (1)NumPy的random模块提供了生成随机数的函数,如rand()、randn()、randint()等。...数组重塑 import numpy as np arr = np.array([1, 2, 3, 4, 5, 6]) # 重塑为二维数组 arr_reshape = arr.reshape(2, 3...) print("重塑后的数组:\n", arr_reshape) 上述代码示例中,使用NumPy数组的reshape方法将一维数组重塑为二维数组。
领取专属 10元无门槛券
手把手带您无忧上云