首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用Python解析MNIST数据集

    前言 最近在学习Keras,要使用到LeCun大神的MNIST手写数字数据集,直接从官网上下载了4个压缩包: ?...MNIST数据集 解压后发现里面每个压缩包里有一个idx-ubyte文件,没有图片文件在里面。回去仔细看了一下官网后发现原来这是IDX文件格式,是一种用来存储向量与多维度矩阵的文件格式。...解析脚本 根据以上解析规则,我使用了Python里的struct模块对文件进行读写(如果不熟悉struct模块的可以看我的另一篇博客文章《Python中对字节流/二进制流的操作:struct模块简易使用教程...9@time: 2016/8/16 20:03 10对MNIST手写数字数据文件转换为bmp图片文件格式。...11数据集下载地址为http://yann.lecun.com/exdb/mnist。 12相关格式转换见官网以及代码注释。

    1.3K40

    基于tensorflow的MNIST数据集手写数字分类预测

    0.编程环境 安装tensorflow命令:pip install tensorflow 操作系统:Win10 tensorflow版本:1.6 tensorboard版本:1.6 python.../tensorflow/ 2.参考云水木石的文章,链接:https://mp.weixin.qq.com/s/DJxY_5pyjOsB70HrsBraOA 2.下载并解压数据集 MNIST数据集下载链接...4.数据准备 import warnings warnings.filterwarnings('ignore') import tensorflow as tf from tensorflow.examples.tutorials.mnist...5.数据观察 本章内容主要是了解变量mnist中的数据内容,并掌握变量mnist中的方法使用。...5.如何进一步提高模型准确率,请阅读本文作者的另一篇文章《基于tensorflow+DNN的MNIST数据集手写数字分类预测》,链接:https://www.jianshu.com/p/9a4ae5655ca6

    1.6K30

    TensorFlow2.0(10):加载自定义图片数据集到Dataset

    前面的推文中我们说过,在加载数据和预处理数据时使用tf.data.Dataset对象将极大将我们从建模前的数据清理工作中释放出来,那么,怎么将自定义的数据集加载为DataSet对象呢?...这对很多新手来说都是一个难题,因为绝大多数案例教学都是以mnist数据集作为例子讲述如何将数据加载到Dataset中,而英文资料对这方面的介绍隐藏得有点深。...本文就来捋一捋如何加载自定义的图片数据集实现图片分类,后续将继续介绍如何加载自定义的text、mongodb等数据。...加载自定义图片数据集 如果你已有数据集,那么,请将所有数据存放在同一目录下,然后将不同类别的图片分门别类地存放在不同的子目录下,目录树如下所示: $ tree flower_photos -L 1 flower_photos...) image_label_ds 这时候,其实就已经将自定义的图片数据集加载到了

    2K20

    基于tensorflow+RNN的MNIST数据集手写数字分类

    此文在上一篇文章《基于tensorflow+DNN的MNIST数据集手写数字分类预测》的基础上修改模型为循环神经网络模型,模型准确率从98%提升到98.5%,错误率减少了25% 《基于tensorflow...+DNN的MNIST数据集手写数字分类预测》文章链接:https://www.jianshu.com/p/9a4ae5655ca6 0.编程环境 操作系统:Win10 tensorflow版本...如果没有nvidia显卡,但有visa信用卡,请阅读我的另一篇文章《在谷歌云服务器上搭建深度学习平台》,链接:https://www.jianshu.com/p/893d622d1b5a 3.下载并解压数据集...MNIST数据集下载链接: https://pan.baidu.com/s/1fPbgMqsEvk2WyM9hy5Em6w 密码: wa9p 下载压缩文件MNIST_data.rar完成后,选择解压到当前文件夹...方法; 第6行代码表示重置tensorflow图 第7行代码加载数据库MNIST赋值给变量mnist; 第8-13行代码定义超参数学习率learning_rate、批量大小batch_size、步数

    1.4K30

    TensorFlow系列专题(六):实战项目Mnist手写数据集识别

    通过这个例子,我们将了解如何将数据转化为神经网络所需要的数据格式,以及如何使用TensorFlow搭建简单的单层和多层的神经网络。 二....MNIST数据集 MNIST数据集可以从网站http://yann.lecun.com/exdb/mnist/上下载,需要下载的数据集总共有4个文件,其中“train-images-idx3-ubyte.gz...TensorFlow的示例代码中已经对MNIST数据集的处理进行了封装,但是作为第一个程序,我们希望带着读者从数据处理开始做,数据处理在整个机器学习项目中是很关键的一个环节,因此有必要在第一个项目中就让读者体会到它的重要性...接下来我们要实现“MnistData”类的另一个方法“get_data”,该方法实现了Mnist数据集的读取以及数据的预处理。 ? ? ?...图2 实现Mnist手写数字识别的两层神经网络结构 接下来我们实现具体的代码,首先导入上一小节中我们实现的数据处理的类以及TensorFlow的包: ?

    48720

    基于tensorflow+DNN的MNIST数据集手写数字分类预测

    此文在上一篇文章《基于tensorflow的MNIST数据集手写数字分类预测》的基础上添加了1个隐藏层,模型准确率从91%提升到98% 《基于tensorflow的MNIST数据集手写数字分类预测》文章链接...版本:1.6 tensorboard版本:1.6 python版本:3.6 1.致谢声明 1.本文是作者学习《周莫烦tensorflow视频教程》的成果,感激前辈; 视频链接:https://morvanzhou.github.io...-5Q 2.下载并解压数据集 MNIST数据集下载链接: https://pan.baidu.com/s/1fPbgMqsEvk2WyM9hy5Em6w 密码: wa9p 下载压缩文件MNIST_data.rar...4.数据准备 import warnings warnings.filterwarnings('ignore') import tensorflow as tf from tensorflow.examples.tutorials.mnist...5.数据观察 本章内容主要是了解变量mnist中的数据内容,并掌握变量mnist中的方法使用。

    1.4K30

    教程 | 使用MNIST数据集,在TensorFlow上实现基础LSTM网络

    选自GitHub 机器之心编译 参与:刘晓坤、路雪 本文介绍了如何在 TensorFlow 上实现基础 LSTM 网络的详细过程。作者选用了 MNIST 数据集,本文详细介绍了实现过程。...我们的目的 这篇博客的主要目的就是使读者熟悉在 TensorFlow 上实现基础 LSTM 网络的详细过程。 我们将选用 MNIST 作为数据集。.../", one_hot=True) MNIST 数据集 MNIST 数据集包括手写数字的图像和对应的标签。...训练数据(mnist.train):55000 张图像 2. 测试数据(mnist.test):10000 张图像 3....验证数据(mnist.validation):5000 张图像 数据的形态 讨论一下 MNIST 数据集中的训练数据的形态。数据集的这三个部分的形态都是一样的。

    1.5K100

    基于tensorflow+CNN的MNIST数据集手写数字分类预测

    此文在上一篇文章《基于tensorflow+DNN的MNIST数据集手写数字分类预测》的基础上修改模型为卷积神经网络模型,模型准确率从98%提升到99.2% 《基于tensorflow+DNN的MNIST...数据集手写数字分类预测》文章链接:https://www.jianshu.com/p/9a4ae5655ca6 0.编程环境 安装tensorflow命令:pip install tensorflow...操作系统:Win10 tensorflow版本:1.6 tensorboard版本:1.6 python版本:3.6 1.致谢声明 1.本文是作者学习《周莫烦tensorflow视频教程》的成果...://mp.weixin.qq.com/s/MTugq-5AdPGik3yJb9yDJQ 2.下载并解压数据集 MNIST数据集下载链接: https://pan.baidu.com/s/1fPbgMqsEvk2WyM9hy5Em6w....tensorflow加载模型比sklearn加载模型稍有难度,保存模型时必须对变量命名,否则无法成功加载模型。

    2K31

    如何为Tensorflow构建自定义数据集

    Tensorflow IO和源代码构建 https://github.com/tensorflow/io#developing 2.查看源树中的相邻数据集,并选择一个最接近pcap的数据集。...张量的例子 它有助于理解 TF数据集的好处以及开箱即用的所有便利功能,如批处理,映射,重排,重复。这些功能使得使用有限数据量和计算能力构建和训练TF模型变得更加容易和高效。...数据集和其他TF操作可以用C ++或Python构建。我选择了C ++路由,这样我就可以学习一些TF C ++框架。然后我用Python包装它们。...将来,我计划编写一些纯Python数据集,这应该会更容易一些。 看一下TF IO数据集的源代码文件结构。 ?...tests/test_pcap_eager.py 希望这可以帮助构建自己的自定义数据集。

    1.9K30

    基于TensorFlow卷积神经网络与MNIST数据集设计手写数字识别算法

    TensorFlow TensorFlow是一个基于Python和基于数据流编程的机器学习框架,由谷歌基于DistBelief进行研发,并在图形分类、音频处理、推荐系统和自然语言处理等场景下有着丰富的应用...MNIST数据集已经被集成在Keras中,可以直接使用keras.datasets来访问。 环境安装与数据集 (1)环境信息 Python 3.81. Visual C++库1....算法原理与设计 (1)加载MNIST数据 (2)定义变量 定义占位符placeholder 通过shape参数,TensorFlow能够自动捕捉因数据维度不一致导致的错误。...使用过程 (1)测试Tensorflow是否安装成功、MNIST数据集是否可以成功调用 ** 1.下载MNIST数据集** #导入tensorflow库 import tensorflow...as #mnist数据集的完整前缀和名称 mnist=tf.keras.datasets.mnist #使用minist数据集的load_data( )加载数据集 (train_

    74121

    TensorFlow 2.0 代码实战专栏开篇

    使用TensorFlow 2.0的“layers”和“model”API构建一个简单的神经网络来对MNIST数字数据集进行分类。 简单神经网络(低级)。...一个原始的简单神经网络实现来对MNIST数字数据集进行分类。 卷积神经网络。使用TensorFlow 2.0的“layers”和“model”API构建卷积神经网络对MNIST数字数据集进行分类。...原始卷积神经网络的实现来对MNIST数字数据集进行分类。 递归神经网络(LSTM)。...工具 保存和加载模型。使用TensorFlow 2.0保存和加载模型。 构建自定义层和模块。学习如何构建自己的层/模块,并将它们集成到TensorFlow 2.0模型中。 5....数据管理 加载和解析数据。使用TensorFlow 2.0构建高效的数据管道(Numpy数组、图像、CSV文件、自定义数据等)。 构建和加载TFRecords。

    1.1K20

    深度学习与Java 使用Deep Java Library(DJL)构建AI模型

    跨平台支持:可以在不同操作系统上运行,如Linux、Windows和macOS。通过DJL,Java开发者无需切换到Python环境,便能在Java中实现深度学习模型的构建、训练、评估及部署。...加载数据集首先,我们需要加载一个数据集。DJL支持加载多种数据格式,我们将使用MNIST手写数字数据集作为示例。...数据集 Mnist mnist = Mnist.builder().setSampling(32, true).build(); mnist.prepare(new ProgressBar...()); System.out.println("Data loaded."); }}此代码使用DJL的Mnist类来加载MNIST数据集,并将数据分成训练集和验证集。...DJL支持将模型导出为标准格式,如ONNX、TensorFlow模型格式等。你可以将训练好的模型通过REST API或其他方式集成到Java应用中。1.

    35520

    一次GAN项目背景下的tensorflow_datasets的mnist数据集的下载笔记

    手动下载数据集 在自己电脑上从网址 http://yann.lecun.com/exdb/mnist/ 手动下载数据集(四个,上文有提到) 这个时候需要注意⚠️,有些浏览器下载压缩包会自动给解压。...于是换一种下载方法: 在数据集处右键获得数据集链接,直接在命令行输入 [wget + 链接] 下载未解压版本。...数据集放到指定位置 仔细观察步骤4的报错信息,发现其自动下载数据集的存放地址为 [~/tensorflow_datasets/mnist/1.0.0] 于是新建一个文件夹,把刚刚下载好的未解压的文件放到这里...再次运行步骤4的tfds.load('mnist')的代码 手动下载数据集并放到正确位置后,url错误消失,但出现新的错误,仍然无法成功load数据集: tensorflow.python.framework.errors_impl.NotFoundError.../example_configs/mnist.gin 不再出现数据集的问题。 成功!!!

    75810
    领券