首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【SLAM】开源 | CPL-SLAM:解决基于平面图的SLAM问题计算力更强,鲁棒性更高

    本文研究了基于平面图的SLAM问题,包含自主主体的姿态和观测地标的位置两个方面。本文提出了一种利用复数表示法求解基于平面图的SLAM的有效且正确的算法——CPL-SLAM。将基于平面图的SLAM简化为单位复数积上的极大似然估计,并将该非凸二次复数优化问题松弛为凸复半定规划(SDP)问题。并将相应的复半定规划简化为用黎曼置信域(RTR)法求解的复斜流形上的黎曼阶梯优化(RSO)问题。此外,本文还证明了只要噪声幅值低于某一阈值,SDP松弛和RSO简化是紧密的。将本文提出的CPL-SLAM方法与现有的SOTA的基于平面图的SLAM方法进行应用验证比较,结果表明本文提出的算法能够很好地解决基于平面图的SLAM问题,相比于现有SOTA方法对测量噪声有更强的鲁棒性和更高效的数值计算能力。

    02

    关于平面图到对偶图的转化

    哇对偶图真的是个好东西, 昨天考NOI2010的时候前两道很快做完了, 看着t3发呆了1个多小时, 啥也想不出来. 看着网格图突然想到听说bzoj1001狼抓兔子可以用对偶图求解. 对偶图是啥我也不知道, 听说把面看成点, 连边后跑一边最短路就可以了. 但是当时想到这个突然发现自己不会建对偶图, 看时间还有一个多小时, 于是建了8种可能的图, 每一个都跑一遍spfa, 发现有一个可以过样例, 手动模拟一下觉得这种建图没错, 就交上去了. 没想到居然还对了, 哈哈NOI2010我居然290(spfa被卡了一个点), 心中狂喜, 但是一想到t1做过, t3蒙对也就不敢说什么了, 而且这是10年的题了, 时代在进步啊…

    02

    基于图割优化的多平面重建视觉 SLAM(ISMAR2021)

    作者提出了一种语义平面 SLAM 系统,该系统使用来自实例平面分割网络的线索来改进位姿估计和映射。虽然主流方法是使用 RGB-D 传感器,但在这样的系统中使用单目相机仍然面临着鲁棒的数据关联和精确的几何模型拟合等诸多挑战。在大多数现有工作中,几何模型估计问题,例如单应性估计和分段平面重建(piece-wise planar reconstruction,PPR),通常由标准(贪婪)RANSAC解决。然而,在缺乏场景信息(即尺度)的情况下,设置RANSAC的阈值是很非常困难的。在这项工作中,作者认为可以通过最小化涉及空间相干性的能量函数来解决两个提到的几何模型(单应性/3D平面),即图割优化,这也解决了经过训练的CNN的输出是不准确的问题。此外,作者根据实验提出了一种自适应参数设置策略,并完成了对各种开源数据集的综合评估。

    03

    ICLR 2018 | 阿姆斯特丹大学论文提出球面CNN:可用于3D模型识别和雾化能量回归

    选自arXiv 机器之心编译 参与:李舒阳、许迪 通过类比平面CNN,本文提出一种称之为球面CNN的神经网络,用于检测球面图像上任意旋转的局部模式;本文还展示了球面 CNN 在三维模型识别和雾化能量回归问题中的计算效率、数值精度和有效性。 1 引言 卷积神经网络(CNN)可以检测出图像任意位置的局部模式。与平面图像相似,球面图像的局部模式也可以移动,但这里的「移动」是指三维旋转而非平移。类比平面 CNN,我们希望构造一个神经网络,用于检测球面图像上任意旋转的局部模式。 如图 1 所示,平移卷积或互相关的方法

    08

    基于图割优化的多平面重建视觉 SLAM(ISMAR2021)

    作者提出了一种语义平面 SLAM 系统,该系统使用来自实例平面分割网络的线索来改进位姿估计和映射。虽然主流方法是使用 RGB-D 传感器,但在这样的系统中使用单目相机仍然面临着鲁棒的数据关联和精确的几何模型拟合等诸多挑战。在大多数现有工作中,几何模型估计问题,例如单应性估计和分段平面重建(piece-wise planar reconstruction,PPR),通常由标准(贪婪)RANSAC解决。然而,在缺乏场景信息(即尺度)的情况下,设置RANSAC的阈值是很非常困难的。在这项工作中,作者认为可以通过最小化涉及空间相干性的能量函数来解决两个提到的几何模型(单应性/3D平面),即图割优化,这也解决了经过训练的CNN的输出是不准确的问题。此外,作者根据实验提出了一种自适应参数设置策略,并完成了对各种开源数据集的综合评估。

    01
    领券