mysql千万级数据如何快速导出 今天给大家讲解如何快速的导出千万级MySQL中的数据,大家平时在进行MySQL数据导出的时候,如何数据量不大(万级记录)可能不会遇到这样那样的问题,下面就我前段事件导出MySQL千万级(目前量级8千万,已快到一亿)数据遇到问题的一个回放和代码优化。 查询优化 当你接到需求,可能第一时间想到,直接全量查询不就好了,如果数据记录在几万条还好,当MySQL一个表的数据大于200W的时候,这个时候去查询已经非常吃力了,即使在添加索引的情况下。 查询需求 收到的需求是,
由于一次导入千万条数据性能较低,因此决定把后面的1000万行,拆分为两部分,分两次导入,如下操作:
我们对索引这个名词最早的认知应该来自初学任何一门程序设计语言时 的数组吧,数组的下标即是索引,索引有什么用?我们的计算机没有想 像的那么聪明,cpu在查找数据是你如果不指定方式他只会从头到尾依次 遍历,有了索引之后我们就可以对Cpu进行优雅的指挥啦。快速定位,提 升效率!
很多时候,因为数据统计,我们需要将数据库的数据导出到Excel等文件中,以供数据人员进行查看,如果数据集不大,其实很容易;但是如果对于大数集的导出,将要考虑各种性能的问题,这里以导出数据库一百万条数据为例,导出时间不过20秒,值得学习的一种大数据导出方式。
数据迁移,工作原理和技术支持数据导出、BI报表之类的相似,差异较大的地方是导入和导出数据量区别,一般报表数据量不会超过几百万,而做数据迁移,如果是互联网企业经常会涉及到千万级、亿级以上的数据量。
对于传统的关系数据库如oracle,在大量数据导入方面的效率,我们一般有一个大概的认知,即1分钟以内可以导入千万条数据,而对于MySQL数据库,普遍观点以为性能相对较差,尤其时对于千万级别的数据量,几十分钟、几个小时,都是可能的。是否如此,本文会给出答案。
我们通常会遇到这样的一个场景,就是需要将一个数据库的数据迁移到一个性能更加强悍的数据库服务器上。这个时候需要我们做的就是快速迁移数据库的数据。
最近有个需求解析一个订单文件,并且说明文件可达到千万条数据,每条数据大概在20个字段左右,每个字段使用逗号分隔,需要尽量在半小时内入库。
电话销售大家一定都经历过,许多公司都有电销的团队,相信看过华尔街之狼的人肯定会理解的更加深刻。我们今天不讨论那些公司是如何通过各种渠道获取到大众的电话号码的。我有幸开发了一个需要处理海量电话号码的系统,这个系统的功能包括:
今天在说Mysql查询优化之前,我先说一个常见的面试题,并带着问题深入探讨研究。这样会让大家有更深入的理解。
mysql的SQL_CALC_FOUND_ROWS 使用 类似count(*) 使用性能更高
SELECT * FROM table ORDER BY id LIMIT 1000, 10;
今天上班的时候接收到了一个业务方的反馈,说是一个数据库在删除表的时候报错了,我让他截给我日志看看,日志中的内容如下:
1千万,2千万,或者上亿条数据?具体的答案不重要,当然肯定也不会是一个固定的数目,今天我们就一起来探讨探讨这个问题。
——为了今天要写的内容,运行了将近7个小时的程序,在数据库中存储了1千万条数据。——
如何解决消息队列的延时以及过期失效问题?消息队列满了以后该怎么处理?有几百万消息持续积压几小时,说说怎么解决?
在我们平时工作或学习的过程中,有时需要在数据库中生成大量的测试数据,这个时候,我们可以利用mysql内存表插入速度快的特点,先利用函数和存储过程在内存表中生成数据,然后再从内存表插入普通表中。经过我的测试,这种方案插入数据是非常快的。
本文实例讲述了php使用fputcsv实现大数据的导出操作。分享给大家供大家参考,具体如下:
Server version: 5.5.56-MariaDB MariaDB Server
当一张表的数据达到几千万时,你查询一次所花的时间会变多,如果有联合查询的话,我想有可能会死在那儿了。分表的目的就在于此,减小数据库的负担,缩短查询时间。
为什么要分表 当一张表的数据达到几千万时,你查询一次所花的时间会变多,如果有联合查询的话,我想有可能会死在那儿了。分表的目的就在于此,减小数据库的负担,缩短查询时间。 mysql中有一种机制是表锁定和行锁定,是为了保证数据的完整性。表锁定表示你们都不能对这张表进行操作,必须等我对表操作完才行。行锁定也一样,别的sql必须等我对这条数据操作完了,才能对这条数据进行操作。 mysql proxy:amoeba 做mysql集群,利用amoeba。 从上层的java程序来讲,不需要知道主服务器和从服务器的来源,即
码农架构的读者应该注意到上个周末有分享一篇文章:一个几乎每个系统必踩的坑儿:访问数据库超时,最后对于怎么避免写出慢SQL没有过多赘述,但实际上这个问题我们经常遇到。我们不能等着系统上线,慢 SQL 吃光数据库资源之后,再找出慢 SQL 来改进,那样就晚了。那么,怎样才能在开发阶段尽量避免写出慢 SQL 呢?
二,mongodb跟上面的区别是,它属于文档数据库,存储的是文档(Bson(基于json修改json串时,这个json串后面的数据位置不发生变化,介绍空间)->json的二进制)
为了与MySQL做个对比,做一个PG的数据导入测试,使用COPY方式,测试环境保持一致,具体如下所述。
最近迁移一个数据库,500多张表大概600多万条数据,通过navicat导出的数据,再通过source命令导入到mysql8.0
本文的内容主要以问答方式展开,层层递进分析、解决问题,本文涉及内容会围绕下面三个问题展开。在开始阅读本文内容前,大家不妨先尝试自己回答下面三个问题!
MySQL-大批量数据如何快速的数据迁移 背景:最近接触到一个诊所的项目,主要做二次开发,由于甲方没法提供测试数据库(只有生产环境),且二次开发还是基于之前的数据库结构,给了数据库文档和生产库数据地址。由于生产库数据量比较大,我们也没法直接在生产库下二次开发(胆小),我们打算从生产库环境下迁移需要用到表导入自己的开发环境下,迁移的是表结构和表中数据,大概一个表在400M左右(300万条数据),全是InnoDB的存储引擎,而且都带有索引结构。针对如上的迁移数据的需求,我们尝试过直接通过从生产库下导出SQL文件
2,统计行数时,如果不加where,它可以直接取到结果,因为它可以利用存储引擎的特性直接获得这个值,比如count(*)
1、先查询出90万+10条记录的id,回表查询数据,再将90万+10条完整记录发给MySQL以便筛选最后10条; 2、先查询出90万+10条记录的id,筛选出最后10条记录的id再回表查询,最后返回10条完整记录给MySQL。 在回表次数很多(limit决定)的情况下,显然第二种方法是比较快的,但是MySQL默认采用了第一种。
由于最近疫情的影响,相信最近很多小伙伴都忙于线上办公或者面试?,笔者这里分享一道发生在大厂前端线上编程面试中的一道题目, 如何让 6000 万数据包和 300 万数据包在仅 50M 内存环境中求交集,
最近做的项目,有个需求(从Elastic Search取数据,业务运算后),每次要向MySQL插入1300万条数据左右。最初用MySQL的executemany()一次插入10000条数据,统计的时间如下:
为了满足每秒插入100万条数据的需求,小编建议采用以下技术方案,以提升数据库系统的吞吐量和性能。
索引的本质:通过不断地缩⼩想要获取数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是说,有了这种索引机制,我们可以总是⽤同⼀种查找⽅式来锁定数据。磁盘中数据的存取
.example_responsive_1 { width: 200px; height: 50px; } @media(min-width: 290px) { .example_responsive_1 { width: 270px; height: 50px; } } @media(min-width: 370px) { .example_responsive_1 { width: 339px; height: 50px; } } @media(min-width: 500px) { .example_responsive_1 { width: 468px; height: 50px; } } @media(min-width: 720px) { .example_responsive_1 { width: 655px; height: 50px; } } @media(min-width: 800px) { .example_responsive_1 { width: 728px; height: 50px; } } (adsbygoogle = window.adsbygoogle || []).push({});
这个方案就跟停机迁移一样,步骤几乎一致,唯一的一点就是那个导数的工具,是把现有库表的数据抽出来慢慢倒入到新的库和表里去。但是最好别这么玩儿,有点不太靠谱,因为既然分库分表就说明数据量实在是太大了,可能多达几亿条,甚至几十亿,你这么玩儿,可能会出问题。
在MySQL数据库中,当我们面对一个拥有大量数据的表,并且需要删除重复数据时,我们需要采用高效的方法来处理。今天了我们正好有张表,大概3千万条数据,重复数据有近2千多万条,本文将介绍几种方法,帮助您删除MySQL表中重复的数据中。
在日常工作中我们不可避免地会遇到慢SQL问题,比如笔者在之前的公司时会定期收到DBA彪哥发来的Oracle AWR报告,并特别提示我某条sql近阶段执行明显很慢,可能要优化一下等。对于这样的问题通常大家的第一反应就是看看sql是不是写的不合理啊诸如:“避免使用in和not in,否则可能会导致全表扫描”“ 避免在where子句中对字段进行函数操作”等等,还有一种常见的反应就是这个表有没有加索引?绝大部分情况下,加了个索引基本上就搞定了。
1.选取最适用的字段属性,可以的情况下,应该尽量把字段设置为NOT NULL 2.使用连接(JOIN)来代替子查询 3.使用联合来代替手动创建的临时表 4.增删改或者多条查询数据时使用事务操作 5.锁定表(代替事务的另一种方法) 6.使用外键(锁定表的方法可以维护数据的完整性,但它不能保证数据的关联性,应该使用外键) 7.可以优化SQL查询算法,提高查询速度 8.给数据量大的查询次数频繁而修改次数少的数据表添加索引,提升查询速度
看到标题,有的童鞋心中暗想“数据删除有什么可提的呢?不就是执行个delete语句吗?有什么难的呀?”其实呢数据删除没有你想的这么简单,一般情况下公司会明确的要求数据只能逻辑删除,不能物理删除。那什么优势逻辑删除,什么又是物理删除呢?
ORACLE在逻辑存储上分4个粒度 ,由大到小为: 表空间, 段, 区 和 块.
查看代码打印1 SELECT * FROM table ORDER BY id LIMIT 1000,10; 以上SQL语句在原理上和在实际操作中是不会存在什么问题,可是当table表的数据量达到几十万以上的时候。上面的语句运行一遍,可能会要运行个十几秒的时间,而且当页数越靠后的话,运行的时间会越长。这个时候我们就须要找到一种更快的查询办法来替代这样的操作了。
场景: 几千万条数据在MQ里积压了七八个小时,从下午4点多,积压到了晚上很晚,10点多,11点多。线上故障了,这个时候要不然就是修复consumer的问题,让他恢复消费速度,然后傻傻的等待几个小时消费完毕。这个肯定不行。一个消费者一秒是1000条,一秒3个消费者是3000条,一分钟是18万条,1000多万条。所以如果你积压了几百万到上千万的数据,即使消费者恢复了,也需要大概1小时的时间才能恢复过来。 解决方案: 这种时候只能操作临时扩容,以更快的速度去消费数据了。具体操作步骤和思路如下: ①先修复consumer的问题,确保其恢复消费速度,然后将现有consumer都停掉。
B表数据的字段中有school、speciality和post三个字段,和一个字段number
领取专属 10元无门槛券
手把手带您无忧上云