最近公众号组织了ORB-SLAM2理论与代码的学习会,正常进行中,有兴趣的可以积极参与第三期:一起来学SLAM
由于近期在研究相机与投影仪的标定程序时,需要将结构光图片与灰点相机拍摄得到的图片中,找出角点之间的对应性,使用了如下一条代码:
选自arXiv 作者:徐迅等人 机器之心编译 参与:路、张倩 许多现实世界的场景不能简单地归类为普通的或者退化的,同时对场景的运动分割也不能简单地划分为基础矩阵方法和单应性矩阵方法。考虑到这些,新加坡国立大学提出了结合多种模型的多视角光谱聚类的框架。实验表明该框架获得最好的运动分割结果。此外,研究者还提出了一个改编自 KITTI 基准的数据集,它包括了许多传统数据集所没有的特征。 许多几何模型被用于运动分割问题,模拟不同种类的相机、场景以及运动。通常情况下,这类问题的基本模型通常是被认为适用于不同场景的,而
单应性原理被广泛应用于图像配准,全景拼接,机器人定位SLAM,AR增强现实等领域。这篇文章从基础图像坐标知识系为起点,讲解图像变换与坐标系的关系,介绍单应性矩阵计算方法,并分析深度学习在单应性方向的进展。
单应性是一种平面关系,可将点从一个平面转换为另一个平面。它是一个3乘3的矩阵,转换3维矢量表示平面上的2D点。这些向量称为同质坐标,下面将进行讨论。下图说明了这种关系。这四个点在红色平面和图像平面之间相对应。单应性存储相机的位置和方向,这可以通过分解单应性矩阵来检索。
图像处理之理解Homography matrix(单应性矩阵) 单应性矩阵是投影几何中一个术语,本质上它是一个数学概念,但是在OpenCV中却是有几个函数与透视变换相关的函数,都用到了单应性矩阵的概念与知识。小编跟很多人一样,刚开始学习图像处理对单应性矩阵不是很了解,通过项目实践慢慢知道了一些这方面的知识和自己对它的理解,就跟大家分享一下。 单应性矩阵概念 这里说的单应性矩阵主要是指平面单应性矩阵,在三轴坐标中XYZ,Z=1这个有点类似于三维的齐次坐标。单应性矩阵主要用来解决两个问题, 一是表述真实世界中一
单应性矩阵是投影几何中一个术语,本质上它是一个数学概念,但是在OpenCV中却是有几个函数与透视变换相关的函数,都用到了单应性矩阵的概念与知识。小编跟很多人一样,刚开始学习图像处理对单应性矩阵不是很了解,通过项目实践慢慢知道了一些这方面的知识和自己对它的理解,就跟大家分享一下。
在上篇文章——系列篇|结构光三维重建基本原理中,笔者介绍了单目结构光三维成像系统把投影仪“看成”相机的模型。基于这个模型,单目结构光三维成像系统可以像双目三维成像系统那样来获取空间中物体的三维信息。不过,要真正计算出物体的三维解,需要对单目结构光系统进行精确的标定。
原文链接:http://blog.csdn.net/humanking7/article/details/44756235
论文阅读模块将分享点云处理,SLAM,三维视觉,高精地图相关的文章。公众号致力于理解三维视觉领域相关内容的干货分享,欢迎各位加入我,我们一起每天一篇文章阅读,开启分享之旅,有兴趣的可联系微信dianyunpcl@163.com。
初始化对于单目SLAM来说是必须的。本文重点研究了一种基于平面特征的单目SLAM初始化方法。该算法从滑动窗口的单应矩阵估计开始,然后通过全局平面优化(global plane optimization, GPO)获取相机位姿和平面法线。3D点可以通过使用平面约束恢复,无需三角化(or三角测量)。本文提出的方法充分利用了多帧的平面信息,避免了单应矩阵分解中的模糊性。我们在收集来的棋盘数据集上参照基准方法的实现,验证了我们的算法,并进行了广泛的分析。实验结果表明,我们的方法在准确度和实时性两方面都优于调优后的基准方法。
Initializer::Initializer(const Frame &ReferenceFrame, float sigma, int iterations)参数: 参考帧(第一帧), 误差, 迭代次数 操作:读取参考帧的相机模型, 内参, 去畸变的特征点等传入参数
Initializer::Initializer(const Frame &ReferenceFrame, float sigma, int iterations)
计算机视觉中,相机标定的重要性不言而喻,前面在公众号【视觉IMAX】中写过有多篇文章是关于相机标定的,包括一分钟详解OpenCV之相机标定函数calibrateCamera(),从零开始学习「张氏相机标定法」,但是,今天还想再次聊一聊相机标定,进一步加深对其基本方法与概念的理解。
你可能已经(或可能没有)听过或看过增强现实电子游戏隐形妖怪或Topps推出的3D棒球卡。其主要思想是在平板电脑,PC或智能手机的屏幕上,根据卡片的位置和方向,渲染特定图形的3D模型到卡片上。 图1:隐形妖怪增强现实卡。 上个学期,我参加了计算机视觉课程,对投影几何学的若干方面进行了研究,并认为自己开发一个基于卡片的增强现实应用程序将是一个有趣的项目。我提醒你,我们需要一点代数来使它工作,但我会尽量少用。为了充分利用它,你应该轻松使用不同的坐标系统和变换矩阵。 <免责声明 首先,这篇文章并不是一个教
你可能已经(或可能没有)听过或看过增强现实电子游戏隐形妖怪或Topps推出的3D棒球卡。其主要思想是在平板电脑,PC或智能手机的屏幕上,根据卡片的位置和方向,渲染特定图形的3D模型到卡片上。 图1:
这里使用的是齐次坐标系,也就是可以进行任意尺度的缩放。比如我们把Hij乘以任意一个非零常数k并不改变等式结果
生活中,存在最多的就是单目相机,不过现在双摄,三摄手机基本取代了单目手机,我们先来说一下单目相机的缺点。单目相机在使用中存在尺度问题,先来看看下面这种图片。
之前写了两篇文章分别是图像单应性矩阵变换与图像拼接,图像拼接中使用单应性矩阵实现图像特征对齐,从而为图像拼接特别是无缝拼接打下基础,看一下上一篇我的图像拼接效果如下:
我们所常见的都是以这样的方式来处理图像:检测斑点,分割感兴趣的对象等。我们如何将它们从一种形式转换为另一种形式来处理这些图像呢?通过单应矩阵快速转换图像可以实现这个需求。
常见的单目相机主要有两种模型:即pinhole(针孔相机)与fisheye(鱼眼相机)模型,之前我已经介绍过视觉坐标系转换原理,不管单目相机模型是什么,其内参模型是一样的,将之前的结果拿过来,如下图所示:
标题:ELSR: Efficient Line Segment Reconstruction with Planes and Points Guidance
OpenCV在通过特征描述子完成描述子匹配之后,会得到一些关键点对,我们会把这些关键点对分别添加到两个vector对象中,作为输入参数,调用单应性矩阵发现函数来发现一个变换矩阵H,函数 findHomography 就完成了这样的功能,常见的调用代码如下:
前面写了一篇关于单应性矩阵的相关文章,结尾说到基于特征的图像拼接跟对象检测中单应性矩阵应用场景。得到很多人留言反馈,让我继续写,于是就有这篇文章。这里有两张照片(我手机拍的),背景是我老家的平房,周围是一片开阔地带,都是麦子。有图为证:
点击上方蓝字关注我们 微信公众号:OpenCV学堂 关注获取更多计算机视觉与深度学习知识 OpenCV4.4版本以后已经把SIFT跟SURF特征提取又重新get回来了,可以不需要编译OpenCV源码,直接下载官方预编译版本的就可以直接使用了。但是很多人还以为必须要编译源码才能使用SIFT特征检测的函数!如果还不知道SIFT特征是什么,就看这里的这篇文章就好啦。 OpenCV SIFT特征算法详解与使用 01 创建SIFT特征提取器 下面就来验证一下是否真的可以了,请看步骤与过程,首先创建SIFT特征提取器
秋招求职,职位意向 SLAM 相关:做自动驾驶, AR/VR,自主移动机器人面试过程必然有相应问题抛出。
本文承接ORB-SLAM3 细读单目初始化过程(上),ORBSLAM3单目视觉有很多知识点需要展开和深入,初始化过程是必然要经历的,而网上资料不够系统,因此本文主旨是从代码实现出发,把初始化过程系统化,建立起知识树,以把零碎的知识点串联起来,方便快速学习提升自己。注意,本文虽然从代码出发,但并非讲全部代码细节,如有需要建议直接看源代码,地址是:https://github.com/UZ-SLAMLab/ORB_SLAM3,我自己稍微做了点修改,可以跑数据集的版本,可以参考一下,地址是:https://github.com/shanpenghui/ORB_SLAM3_Fixed
https://blog.csdn.net/chentianting/article/details/88869872
图像拼接是计算机视觉中最成功的应用之一。如今,很难找到不包含此功能的手机或图像处理API。在本文中,我们将讨论如何使用Python和OpenCV进行图像拼接。也就是,给定两张共享某些公共区域的图像,目标是“缝合”它们并创建一个全景图像场景。当然也可以是给定多张图像,但是总会转换成两张共享某些公共区域图像拼接的问题,因此本文以最简单的形式进行介绍。
激光雷达技术、以及立体视觉通常用于3D定位和场景理解研究中,那么单个摄像头是否也可以用于3D定位和场景理解中吗?所以我们首先必须了解相机如何将3D场景转换为2D图像的基本知识,当我们认为相机坐标系中的物体场景是相机原点位置(0,0,0)以及在相机的坐标系的X、Y、Z轴时,摄像机将3D物体场景转换成由下面的图描述的方式的2D图像。
Function translates and normalises a set of 2D homogeneous points so that their centroid is at the origin and their mean distance from the origin is sqrt(2). 将2d 齐次点的中心点坐标转移到原点,2d 齐次点和原点的平均距离为 2 \sqrt{2} 2 。
可以看这篇文章来理解如何求解 homography H:单应性(homography)变换的推导
选自arXiv 机器之心编译 参与:Smith 本篇文章把两个 SLAM(同步定位与地图构建)子任务作为机器学习问题,研发出了两个简单的数据生成器,用几百行代码就可以实现,设计了两个可以实时运行的简单
作者提出了一种语义平面 SLAM 系统,该系统使用来自实例平面分割网络的线索来改进位姿估计和映射。虽然主流方法是使用 RGB-D 传感器,但在这样的系统中使用单目相机仍然面临着鲁棒的数据关联和精确的几何模型拟合等诸多挑战。在大多数现有工作中,几何模型估计问题,例如单应性估计和分段平面重建(piece-wise planar reconstruction,PPR),通常由标准(贪婪)RANSAC解决。然而,在缺乏场景信息(即尺度)的情况下,设置RANSAC的阈值是很非常困难的。在这项工作中,作者认为可以通过最小化涉及空间相干性的能量函数来解决两个提到的几何模型(单应性/3D平面),即图割优化,这也解决了经过训练的CNN的输出是不准确的问题。此外,作者根据实验提出了一种自适应参数设置策略,并完成了对各种开源数据集的综合评估。
在32. 镜头、曝光,以及对焦(下)中,我给你介绍了各种各样的相机镜头,也介绍了视场角(FOV)这个概念。现在咱们手机上的主摄像头一般FOV是七、八十度左右,有的更小一些。但人类的视觉系统FOV可以达到
论文及源码地址:APAP项目入口 论文精读:【论文精读】As-Projective-As-Possible Image Stitching with Moving DLT
标题:Line as a Visual Sentence: Context-aware Line Descriptor for Visual Localization
大家好,听说OpenCV4.4 已经把SIFT跟SURF特征提取又重新get回来了,可以不需要编译OpenCV源码,直接下载官方预编译版本的就可以直接使用了。如果你还不知道SIFT特征是什么,就看这里的这篇文章就好啦。
图像配准是计算机视觉领域的一个基础步骤。在本文深入探讨深度学习之前,我们先展示一下 OpenCV 中基于特征的方法。
论文名称:《GridFace: Face Rectification via Learning Local Homography Transformations》
1美元可以做什么呢?买一瓶水,买半个冰激凌,或者让你用上半小时的GPU。但这些都不够酷!
假设你现在已经拍摄了脚的多张各个角度的2D照片,那么如何将这些照片转化成一个3D数字化形状呢?首先第一步,你要对摄像机进行定标,比如确定摄像机的焦距、摆放位置和角度等。
在文章66. 三维重建——相机几何模型和投影矩阵中,我们已经看到了透视相机的成像模型和相机矩阵:
作者戴金艳,公众号:计算机视觉life, 编辑部成员.首发原文链接计算机视觉方向简介 | 图像拼接
参考:https://baike.baidu.com/item/%E4%B8%89%E8%A7%92%E5%BD%A2%E9%9D%A2%E7%A7%AF%E5%85%AC%E5%BC%8F/8491990
Hadamard门是一种可将基态变为叠加态的量子逻辑门,有时简称为H门。Hadamard门作用在单比特上,它将基态|0〉变成
数据挖掘是一个非常重要的技术。在近些年,数据挖掘为整个社会创造了巨大的财富。但是通过视频信息实现数据挖掘一直是一个比较艰难的过程。本文介绍的将视频中的信息转成平面信息非常有利于进一步的数据挖掘工作。
领取专属 10元无门槛券
手把手带您无忧上云