Linear Regression with multiple variables——Gradient descent in practice I: Feature Scaling” 01 — 笔记 接下来的两个视频介绍多元梯度下降运算中的实用技巧...而本次视频讲解特征缩放的算法。 在多元线性模型中,非常让人恼火的一点是,不同的变量它的单位是不一样的,这样会导致它们的取值差别会非常大。...自然而然想到的办法,就是将这些分量的取值想办法给进行一些缩放,让它们的取值都在一个相同的可比较的区间内。这样做的好处,就是梯度下降法能够更好地收敛。 那具体怎么做呢?我们就以卖房子这个事为例来看看。...那相对应的误差曲线的等高线就会变得非常漂亮,而梯度下降的路径也会很顺畅,不咋震荡,很容易找到一条直接的路径。 ? 综上,我们就是要想办法让不同的分量的取值空间进行一些缩放,让它们的取值区间相差不大。...用这个值减去平均值然后再除以取值范围,即可得到缩放后的特征值。 以上就是本次视频的内容,我们知道如何进行特征缩放,以及特征缩放之后可以带来梯度下降速度加快的好处。更多内容且听下回。
计算图像的梯度是在进行图像处理时经常用到的方法,但是这玩意自己手写未免效率低而且容易出错。OpenCV里集成了相应的函数,只不过用的人好像并不多导致我找了半天才找到。姑且记一下以备日后使用。...Sobel算子分别求x和y方向的梯度,卷积核的大小我设置的是3。...得到的mag就是对应每个像素的梯度矩阵。实际上这也可以算成边缘检测吧。...对于Sobel函数有个注意点,他的第二个参数是扩展了像素的数值范围,因为梯度是有方向的,所以sobel函数得到的是有正有负的值,所以相当于扩大了取值。...得到的结果通常会用直方图来表示, hist(phase.ravel(),256,[0,256]) 输出的图像就是梯度按照角度的分布。
特征工程又是数据预处理的一个重要组成, 最常见的特征工程有以下一些方法: 编码 缩放 转换 离散化 分离 等等 在本文中主要介绍特征缩放和特征编码的主要方法。...特征缩放 特征缩放是一种在固定范围内对数据中存在的独立特征进行标准化的技术。...对于这些模型来说,特性缩放是非常重要的,特别是当特性的范围非常不同的时候。范围较大的特征对距离计算的影响较大。...而在标准化中,数据被缩放到平均值(μ)为0,标准差(σ)为1(单位方差)。 规范化在0到1之间缩放数据,所有数据都为正。标准化后的数据以零为中心的正负值。 如何选择使用哪种缩放方法呢?...虽然是这么说,但是使用那种缩放来处理数据还需要实际的验证,在实践中可以用原始数据拟合模型,然后进行标准化和规范化并进行比较,那个表现好就是用那个,下图是需要使用特征缩放的算法列表: 特征编码 上面我们已经介绍了针对数值变量的特征缩放
来源:DeepHub IMBA本文4300字,建议阅读8分钟展示梯度提升模型下表格数据中的数字和分类特征的各种编码策略之间的基准测试研究的结果。...为梯度提升学习选择默认的特征编码策略需要考虑的两个重要因素是训练时间和与特征表示相关的预测性能。...尽管这些编码选项可能对于深度学习来说是多余的,但这并不排除它们在其他模型中的效用,包括简单回归、支持向量机、决策树或本文的重点梯度提升模型。...本文目的是展示梯度提升模型下表格数据中的数字和分类特征的各种编码策略之间的基准测试研究的结果。...数字归一化更常用于线性模型,而不是树的模型,例如在神经网络中,它们的目的是跨特征进行归一化梯度更新,应用于数值特征的标准化类型似乎会影响性能。
为梯度提升学习选择默认的特征编码策略需要考虑的两个重要因素是训练时间和与特征表示相关的预测性能。...尽管这些编码选项可能对于深度学习来说是多余的,但这并不排除它们在其他模型中的效用,包括简单回归、支持向量机、决策树或本文的重点梯度提升模型。...本文目的是展示梯度提升模型下表格数据中的数字和分类特征的各种编码策略之间的基准测试研究的结果。...在深度学习出现之前,通常使用提取信息的替代表示来补充特征或以某种方式进行特征的组合来进行特征的扩充,这种特征工程对于梯度提升学习来说还是可以继续使用的。...数字归一化更常用于线性模型,而不是树的模型,例如在神经网络中,它们的目的是跨特征进行归一化梯度更新,应用于数值特征的标准化类型似乎会影响性能。
机器学习中的大部分问题都是优化问题,而绝大部分优化问题都可以使用梯度下降法(Gradient Descent)处理,那么搞懂什么是梯度,什么是梯度下降法就非常重要。...3.png 在前面导数和偏导数的定义中,均是沿坐标轴讨论函数的变化率。那么当我们讨论函数沿任意方向的变化率时,也就引出了方向导数的定义,即:某一点在某一趋近方向上的导数值 四、梯度 定义: ?...五、梯度下降法 既然在变量空间的某一点处,函数沿梯度方向具有最大的变化率,那么在优化目标函数的时候,自然是沿着负梯度方向去减小函数值,以此达到我们的优化目标。 如何沿着负梯度方向减小函数值呢?...既然梯度是偏导数的集合,那么我们在每个变量轴上减小对应变量值即可。 梯度下降法可以描述如下: ?...5.png 以上就是梯度下降法的由来,大部分的机器学习任务,都可以利用Gradient Descent来进行优化。 参考资料 1.
考虑到神经网络在AI研究中的流行,我们将关注范围缩窄到XAI研究的一个特定领域:基于梯度的解释,这可以直接用于神经网络模型。...在这篇综述中,我们系统地探索了迄今为止基于梯度的解释方法,并引入了一个新的分类体系,将它们分为四个不同的类别。然后,我们按时间顺序介绍技术细节的精髓,并强调算法的演变。...在结果解释中通常采用两种方法:特征归因(也称为特征重要性方法)和反事实解释。...然而,在本文中,我们专注于基于梯度的方法,出于以下考虑。 梯度的直觉。梯度量化了输入特征中的无穷小变化如何影响模型预测。因此,我们可以利用梯度及其变体有效地分析特征修改对模型预测结果的影响。...我们总结了XAI中的一般研究挑战以及基于梯度解释特有的特定挑战,这些挑战可能会滋养并为未来工作中的潜在改进奠定基础。
---- 3.2 特征缩放 特征缩放主要分为两种方法,归一化和正则化。...数量级的差异会导致迭代收敛速度减慢。原始的特征进行梯度下降时,每一步梯度的方向会偏离最小值(等高线中心点)的方向,迭代次数较多,且学习率必须非常小,否则非常容易引起宽幅震荡。...5.归一化不是万能的,实际应用中,通过梯度下降法求解的模型是需要归一化的,这包括线性回归、逻辑回归、支持向量机、神经网络等模型。...当然,独热编码也存在一些缺点: 1.高维度特征会带来以下几个方面问题: KNN 算法中,高维空间下两点之间的距离很难得到有效的衡量; 逻辑回归模型中,参数的数量会随着维度的增高而增加,导致模型复杂,出现过拟合问题...---- 小结 特征缩放是非常常用的方法,特别是归一化处理特征数据,对于利用梯度下降来训练学习模型参数的算法,有助于提高训练收敛的速度;而特征编码,特别是独热编码,也常用于对结构化数据的数据预处理。
这些模型具有线性模型的系数,并且在决策树模型中具有重要的功能。在选择最佳数量的特征时,训练估计器,并通过系数或特征重要性选择特征。最不重要的功能已删除。递归地重复此过程,直到获得最佳数量的特征。...在Sklearn中的应用 Scikit-learn使通过类实现递归特征消除成为可能。...在中, Pipeline 我们指定 rfe 了特征选择步骤以及将在下一步中使用的模型。 然后,我们指定 RepeatedStratifiedKFold 10个拆分和5个重复的。...support_ —包含有关要素选择信息的数组。 ranking_ —功能的排名。 grid_scores_ —从交叉验证中获得的分数。 第一步是导入类并创建其实例。...在此管道中,我们使用刚刚创建的 rfecv。 ? 让我们拟合管道,然后获得最佳数量的特征。 ? 可以通过该n_features_ 属性获得最佳数量的特征 。 ? 排名和支持可以像上次一样获得。
关于机器学习中的特征我有话要说 在这次校园招聘的过程中,我学到了很多的东西,也纠正了我之前的算法至上的思想,尤其是面试百度的过程中,让我渐渐意识到机器学习不是唯有算法,机器学习是一个过程...,如组合不同的属性得新的属性,这样就改变了原来的特征空间;而特征选择的方法是从原始特征数据集中选择出子集,是一种包含的关系,没有更改原始的特征空间。...这句话并不是很好理解,其实是讲在确定模型的过程中,挑选出那些对模型的训练有重要意义的属性。 ...总结以及注意点 这篇文章中最后提到了一点就是用特征选择的一点Trap。个人的理解是这样的,特征选择不同于特征提取,特征和模型是分不开,选择不同的特征训练出的模型是不同的。...我们可以拿正则化来举例,正则化是对权重约束,这样的约束参数是在模型训练的过程中确定的,而不是事先定好然后再进行交叉验证的。
关于机器学习中的特征我有话要说 在这次校园招聘的过程中,我学到了很多的东西,也纠正了我之前的算法至上的思想,尤其是面试百度的过程中,让我渐渐意识到机器学习不是唯有算法,机器学习是一个过程,这样的过程包括数据处理...,如组合不同的属性得新的属性,这样就改变了原来的特征空间;而特征选择的方法是从原始特征数据集中选择出子集,是一种包含的关系,没有更改原始的特征空间。...这句话并不是很好理解,其实是讲在确定模型的过程中,挑选出那些对模型的训练有重要意义的属性。 ...总结以及注意点 这篇文章中最后提到了一点就是用特征选择的一点Trap。个人的理解是这样的,特征选择不同于特征提取,特征和模型是分不开,选择不同的特征训练出的模型是不同的。...我们可以拿正则化来举例,正则化是对权重约束,这样的约束参数是在模型训练的过程中确定的,而不是事先定好然后再进行交叉验证的。
总第98篇 本篇讲解一些特征工程部分的特征选择(feature_selection),主要包括以下几方面: 特征选择是什么 为什么要做特征选择 特征选择的基本原则 特征选择的方法及实现 特征选择是什么...为什么要做特征选择 在实际业务中,用于模型中的特征维度往往很高,几万维,有的一些CTR预估中维度高达上亿维,维度过高会增大模型计算复杂度,但是在这么多维数据中,并不是每个特征对模型的预测都是有效果的,所以需要利用一些方法去除一些不必要特征...---------") sel = VarianceThreshold(threshold=1) sel.fit_transform(X) print(sel.fit_transform(X)) 2.单变量特征选择...单变量特征是基于单一变量和目标y之间的关系,通过计算某个能够度量特征重要性的指标,然后选出重要性Top的K个特征。...递归式消除特征 递归式消除特征(RFE)是指,将全部特征都丢到给定的模型里面,模型会输出每个特征的重要性,然后删除那些不太重要的特征;把剩下的特征再次丢到模型里面,又会输出各个特征的重要性,再次删除;如此循环
前言:最近在跟着吴恩达老师(Andrew Ng)的视频课程学习机器学习,该视频是2014年拍的,虽然有点老,但理论却并不过时,是非常经典的机器学习入门教程,也正是因为这是入门教程,所以视频中的有些数学知识只给出了结论却未进行推导...所以随着学习的深入,我不知道为什么的地方也越来越多,所以我决定先搞清楚视频中涉及到的那些未被推导的数学公式之后再继续学习后面的视频教程。...本文是上述所说的系列文章的第一篇,主要对梯度下降算法中的偏导公式进行推导。梯度下降算法是我们在吴恩达老师的教程中遇到的第一个算法,算法中的对代价函数的求导也是我们需要自己推导的第一个数学结果。...我们先来看看梯度下降算法和其代价函数,下图是我从视频中截取出来的: ? 上图左边是梯度下降算法伪码,右边是h和J函数的定义。需要注意的是代价函数J的自变量是和,而不是x和y,x和y只是一些常量。...梯度算法的核心是反复迭代改变和的值直到代价函数J的值达到最小,这里关键是如何去求J的偏导数。 下面我们就尝试着来推导它。
二、机器学习的关键问题 在机器学习中主要有如下的三个关键问题: 特征=对原始数据的数值表示 模型=对特征的数学总结 成功的应用=对于给定的数据和任务选择合适的模型和特征 1、特征 特征是对原始数据的抽象...1.1、文本的特征化 对于文本,通常使用的是Bag of Words词袋模型表示特征,即将文本映射成为一个词的向量,向量的长度是词典的大小,每一位表示词典中的一个词,向量中的每一位上的数值表示该词在文本中出现的次数...Bag of Visual Words中的每一个元素可以通过像素点的组合构成,从低维的特征到更高维的数据抽象,这便是深度学习的概念,如下图所示: ?...1.3、机器学习中的特征空间 从上述的特征提取中发现从原始数据中提取特征是将原始数据映射到一个更高维的空间,特征空间中的特征是对原始数据更高维的抽象。...5、其他的一些主题 机器学习中还有一些其他的主题,包括: 特征的归一化 特征变化 模型的正则化 ······ 参考文献 《Understanding Feature Space in Machine Learning
大家好,又见面了,我是你们的朋友全栈君。...这里,没有直接采用之前的方案,是因为在设计的时候,发现直接采用颜色等直接特征提取然后进行二值化处理的方法,如果视频中出现颜色类似的区域,则很有可能错误的定位,例如在公交车中车牌区域范围和前窗以及部分的背景比较相似...这里,定位的算法,我们使用的是HOG特征提取和Adaboost的算法进行定位。...908977169291.html hog: http://www.doc88.com/p-938477812496.html 上面的几个论文,是我们参考的几个比较好的资料。...定位的仿真效果如下所示: 通过上面的步骤,我们能够对车牌整体范围进行定位,采用这种方法的缺点就是需要大量的样本进行训练才能够获得精度较大的训练结果。样本越多,精度越高。
文本中特征相关概念、人工特征工程、特征处理方式、特征工程和模型的结合等方面具体介绍下推荐广告系统中的特征。推荐系统的特征:特征就是用户在对物品行为过程中相关信息的抽象表达。...构建推荐系统特征工程的原则:尽可能地让特征工程抽取出的一组特征,能够保留推荐环境及用户行为过程中的所有“有用“信息,并且尽量摒弃冗余信息。...易于理解的特征(Simple),特征和label的关系可以从某种角度解释。具体实践:构造特征是一定先思考用户在一次行为过程中,所有行为的依据是什么?...如果 n 非常小,这个下限值会远小于 p,起到了降低好评率的作用,使得该 item 的打分变低、排名下降。...参考:wide&deep模型中如何确定哪些特征适用于wide侧哪些特征适用于deep侧?石塔西:先入为主:将先验知识注入推荐模型石塔西:刀功:谈推荐系统特征工程中的几个高级技巧
前言 前面写了一篇关于单应性矩阵的相关文章,结尾说到基于特征的图像拼接跟对象检测中单应性矩阵应用场景。得到很多人留言反馈,让我继续写,于是就有这篇文章。...主要是应用特征提取模块的AKAZE图像特征点与描述子提取,当然你也可以选择ORB、SIFT、SURF等特征提取方法。...这个其中单应性矩阵发现是很重要的一步,如果不知道这个是什么请看这里: OpenCV单应性矩阵发现参数估算方法详解 基本流程 1.加载输入图像 2.创建AKAZE特征提取器 3.提取关键点跟描述子特征...4.描述子匹配并提取匹配较好的关键点 5.单应性矩阵图像对齐 6.创建融合遮罩层,准备开始融合 7.图像透视变换与融合操作 8.输出拼接之后的全景图 关键代码 在具体代码实现步骤之前,先说一下软件版本...特别注意的是顺序很重要。单应性矩阵发现代码可以看之前文章即可,这里不再赘述。
二、特征缩放(FeatureScaling) 特征缩放的目的,是为了让每个特征值在数量上更加接近,使得每个特征值的变化的影响相对比较“公平”。...其将每个特征值,除以变量中该特征值的范围(特征值最大值减最小值),将结果控制在-1~1之间。 对于x0,不需要改变,其仍是1,也在期望的范围内(-1~1)。...主要原因: 出现这种情况的主要原因,主要有特征值数量多于训练集个数、特征值之间线性相关(如表示面积采用平方米和平方公里同时出现在特征值中)。...3、比较标准方程法和梯度下降算法 这两个方法都是旨在获取使代价函数值最小的参数θ,两个方法各有优缺点: 1)梯度下降算法 优点:当训练集很大的时候(百万级),速度很快。...4、综合 因此,当训练集百万级时,考虑使用梯度下降算法;训练集在万级别时,考虑使用标准方程法。在万到百万级区间时,看情况使用,主要还是使用梯度下降算法。
不相关或部分相关的特征可能会对模型性能产生负面影响。 在这篇文章中,您将会了解自动特征选择技术,您可以使用scikit-learn在Python中准备机器学习(所使用的)数据。 让我们开始吧。...特征选择 特征选择是一个过程,您可以自动选择数据中您感兴趣的对预测变量或输出贡献(影响)最大的特征。...1.单因素特征选择 可以使用统计测试来选择与输出变量具有最强(最紧密)关系的那些要素。 scikit-learn库提供了SelectKBest类,可以使用一系列不同的统计测试来选择特定数量的特征。...您了解了使用scikit-learn在Python中准备机器学习数据的特征选择。...您了解了4种不同的自动特征选择技术: 单因素特征选择。 递归特征消除。 主成分分析。 特征重要性。
领取专属 10元无门槛券
手把手带您无忧上云