摘要
SVD(Singular Value Decomposition, 奇异值分解)是线性代数中既优雅又强大的工具, 它揭示了矩阵最本质的变换....SVD对矩阵A分解得到旋转拉伸操作示意图
通过SVD, 我们找到了能代表矩阵A作为线性变换时最本质的操作. 而σ1,σ2就是所谓的奇异值, 表示对标准正交基各个轴进行拉伸的程度....矩阵Λ=diag(λ1,...λn)为矩阵A的特征值所组成的对角矩阵....压缩
许多存储在计算机中的数据都是以矩阵的形式存在的, 进行合理的矩阵压缩能把存储矩阵所占的空间缩减下来. 例如图像, 事实上一个灰度图像就是一个矩阵, 矩阵中的每个元素就是灰度图像的像素值....奇异值σI,i=1,...n有一定的大小关系, 我们不妨设σ1≥σ2≥...σn, 取前k个分量, 则由(15)可知, 若一个像素为1字节, 原始图像需m×n字节的存储空间, 而使用SVD分解后只需k×