深度学习是一种人工神经网络的应用,其应用范围包括自然语言处理、计算机视觉、语音识别等等。其中,卷积神经网络(Convolutional Neural Network,CNN)是一种应用广泛的图像识别模型,其用于解决计算机视觉领域中的图像分类、目标检测、图像分割等问题。本文将详细介绍卷积神经网络的原理、结构和应用。
卷积神经网络是深度学习中非常重要的一种神经网络模型,目前在图像识别、语音识别和目标检测等领域应用非常广泛。卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,使用反向传播(Back Propagation,BP)算法进行训练。
哈喽,大家好,今天来让我们了解下什么是卷及神经网络,在这篇文章中,我会介绍什么是卷积神经网络,以及卷积神经网络的基本结构和某些具体的应用。话不多说,马上进入正题。 卷积神经网络是近些年来兴起的一种人工网络结构,因为利用卷积神经网络在图片和语言方面能够给出更优秀的结果,因此呢,这种技术也被广泛的传播和应用。卷积神经网络最常用的部分是计算机图片识别。不过因为他的不断创新和不断地迭代也被广泛的用于了视频分析,自然语言处理,药物发现等等。近期很火的阿尔法狗能让计算机看懂围棋,这也是利用了这门技术。 那现在让我们概
随着科学技术的不断发展,在一些领域之中也慢慢地会出现一些听起来非常高端的专业名词,很多业内人士可能都不太明白该名词的含义,因此外行更是不懂是什么东西了,就比如卷积神经网络。对于很多人来说,听到“卷积神经网络”这个词,应该都会思考这是不是人脑之中的某一神经,也或者是某一种思维导图的名称,但实际上卷积神经网络并不是这个意思。那么卷积神经网络究竟是什么呢?
卷积神经网络之父YannLeCuu在1988年提出卷积神经网络时,将这种网络命名为LeNet。现在的卷积神经网络都是基于类似LeNet的网络构架。下图是一个简单的卷积神经网络的图例。 一个卷积神经网络由一个或多个卷积层(Convolution)+池化层(Pooling),再加上一个全连结的前向神经网络组成。 卷积层Convolution 前面咱们已经知道图像卷积操作的原理了。一个卷积核滑动作用在一个图像上,能得到图像的一个对应的特征地图FeatureMap或者激活地图ActivationMap。之所以称为特
纵观过去两年,“深度学习”领域已经呈现出巨大发展势头。在计算机视觉领域,深度学习已经有了较大进展,其中卷积神经网络是运用最早和最广泛的深度学习模型,所以今天就和大家分享下卷积神经网络的工作原理。
------------------------------------分割线----------------------------------
卷积神经网络最早是主要用来处理图像信息。如果用全连接前馈网络来处理图像时,会存在以下两个问题:
开篇的这张图代表ILSVRC历年的Top-5错误率,我会按照以上经典网络出现的时间顺序对他们进行介绍,同时穿插一些其他的经典CNN网络。
① 深度学习基础 : 大脑对外界事务的认知原理 , 是很多深度学习算法的基础 , 这里讨论人类的视觉原理 ,
在 2012 年的 ILSVRC 比赛中 Hinton 的学生 Alex Krizhevsky 使用深度卷积神经网络模型 AlexNet 以显著的优势赢得了比赛,top-5 的错误率降低至了 16.4% ,相比第二名的成绩 26.2% 错误率有了巨大的提升。 AlexNet 再一次吸引了广大研究人员对于卷积神经网络的兴趣,激发了卷积神经网络在研究和工业中更为广泛的应用。现在基于卷积神经网络计算机视觉还广泛的应用于医学图像处理,人脸识别,自动驾驶等领域。越来越多的人开始了解卷积神经网络相关
纵观过去两年,“深度学习”领域已经呈现出巨大发展势头。在计算机视觉领域,深度学习已经有了较大进展,其中卷积神经网络是运用最早和最广泛的深度学习模型,所以今天就和大家分享下卷积神经网络的工作原理。 首先来聊聊什么是深度学习? 什么是深度学习 “Deep learningis abranch of machine learning based on a set of algorithms thatattempt to model highlevel abstractions in databy using a
深度学习基础理论-CNN篇 卷积神经网络的发展历程 - 01 - 卷积神经网络(Convolutional Neural Networks,简称CNN)是一类特殊的人工神经网络,区别于神经网络其
【AI科技大本营导读】深度卷积神经网络是这一波 AI 浪潮背后的大功臣。虽然很多人可能都已经听说过这个名词,但是对于这个领域的相关从业者或者科研学者来说,浅显的了解并不足够。近日,约克大学电气工程与计算机科学系的 Isma Hadji 和 Richard P. Wildes 发表了一篇《我们该如何理解卷积神经网络?》的论文:
卷积神经网络(Convolutional Neural Network,CNN)是一种深度神经网络模型,主要用于图像识别、语音识别和自然语言处理等任务。它通过卷积层、池化层和全连接层来实现特征提取和分类。
雷锋网注:卷积神经网络(Convolutional Neural Network)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。 Yann LeCu
看懂一个东西对人类来说很容易,但是对机器来说却是很难的,这个时候图像识别技术就应运而生。今天我们就为大家揭秘图像识别技术原理,告诉你机器如何利用卷积神经网络进行图像识别,从而“看见”这个世界。
深度卷积神经网络是这一波 AI 浪潮背后的大功臣。虽然很多人可能都已经听说过这个名词,但是对于这个领域的相关从业者或者科研学者来说,浅显的了解并不足够。近日,约克大学电气工程与计算机科学系的 Isma Hadji 和 Richard P. Wildes 发表了一篇《我们该如何理解卷积神经网络?》的论文:
如图1所示,假设输入到神经网络中的是一张大小为256*256的图像,第一层隐藏层的神经元个数为241*241。在只考虑单通道的情况下,全连接神经网络输入层到第一层隐藏层的连接数为,也就是说输入层到第一层隐藏层有个参数(1为偏置项参数个数)。而在卷积神经网络中,假设我们使用了一个大小为16*16的卷积核,则输入层到第一层隐藏层的连接数为,由于我们的卷积核是共享的,因此参数个数仅为个。有时候为了提取图像中不同的特征,我们可能会使用多个卷积核,假设这里我们使用了100个大小为16*16的卷积核,则输入层到第一层隐藏层的参数个数也仅为,这依然远远少于全连接神经网络的参数个数。
卷积神经网络(Convolutional Neural Networks,CNN)是一种神经网络模型,是深度学习的代表算法之一。它广泛应用于计算机视觉、语音处理等领域,在图像处理,语音识别方面具有非常强大的性能。针对计算机视觉任务,卷积神经网络能够很好的从大量的数据中做到特征的提取,并且降低网络的复杂度。
深度学习是近年来兴起的一种机器学习方法,它通过模拟人脑神经网络的结构和功能,实现对大规模数据进行高效处理和学习。卷积神经网络(Convolutional Neural Networks,简称CNN)是深度学习中最重要和最常用的算法之一,它在图像识别、计算机视觉和自然语言处理等领域取得了巨大的成功。
最开始接触这个名词的时候,很长一段时间都将它看做一个高深莫测的神奇工具。竟然和大脑神经都有关系的算法,肯定很厉害!
深度学习是一种新兴的技术,已经在许多领域中得到广泛的应用,如计算机视觉、自然语言处理、语音识别等。在深度学习中,算法是实现任务的核心,因此深度学习必备算法的学习和理解是非常重要的。
② 池化过程 : 将图像分割成一块块小区域 , 每个区域只取一个值 , 取该区域的 最大值采样 , 或平均值采样 ;
卷积神经网络能够进行卷积运算,从局部输入图块中提取特征,并能够将表示模块化,同时可以高效地利用数据。这些性质让卷积神经网络在计算机视觉领域表现优异,同样也让它对序列处理特别有效。对于某些序列处理问题,这种一维卷积神经网络的效果可以媲美 RNN,而且计算代价通常要小很多,并且,对于文本分类和时间序列预测等简单任务,小型的一维卷积神经网络可以替代 RNN,而且速度更快
卷积神经网络(convolutional neural network,CNN)是一种专门用来处理网格结构数据(例如图像数据)的前馈神经网络,是由生物学家Hubel和Wiesel在早期关于猫脑视觉皮层的研究发展而来。Hubel和Wiesel通过对猫脑视觉皮层的研究,发现初级视觉皮层中的神经元会响应视觉环境中特定的特征(称之为感受野机制),他们注意到了两种不同类型的细胞,简单细胞和复杂细胞。其中,简单细胞只对特定的空间位置和方向具有强烈的反应,而复杂细胞具有更大的接受域,其对于特征位置的微小偏移具有不变性。
本文主要介绍了计算机视觉领域中的卷积神经网络在图像分类、物体检测、语义分割和人脸识别等任务中的应用。通过详细的实战案例,展示了如何使用卷积神经网络解决实际问题。同时,本文还介绍了如何使用 TensorFlow 实现卷积神经网络,包括数据读取、网络结构、训练和评估等步骤。
大数据文摘转载自数据派THU 作者:陈之炎 本文让你读懂卷积神经网络。 2022年有专家曾经预测:在视觉领域,卷积神经网络(CNN)会和Transformer平分秋色。随着Vision Transformers (ViT)成像基准SOTA模型的发布, ConvNets的黎明业已到来,这还不算:Meta和加州大学伯克利分校的研究认为, ConvNets模型的性能优越于ViTs。 在视觉建模中,虽然Transformer很快取代了递归神经网络,但是对于那些小规模的ML用例, ConvNet的使用量会出现陡降。而
卷积神经网络属于前面介绍的前馈神经网络之一,它对于图形图像的处理有着独特的效果,在结构上至少包括卷积层和池化层。卷积神经网络是最近几年不断发展的深度学习网络,并广泛被学术界重视和在企业中应用,代表性的卷积神经网络包括LeNet-5、VGG、AlexNet 等。
注:该篇幅参考斯坦福大学的教程,有兴趣的朋友可以去阅读。 卷积神经网络(CNN) 卷积神经网络和前几次介绍的神经网络非常相似:它们都是由神经元组成,神经元中有具有学习能力的权重和偏差。每个神经元都得到一些输入数据,进行内积运算后再进行激活函数运算。整个网络依旧是一个可导的评分函数:该函数的输入是原始的图像像素,输出是不同类别的评分。在最后一层(往往是全连接层),网络依旧有一个损失函数(比如SVM或Softmax),并且在神经网络中我们实现的各种技巧和要点依旧适用于卷积神经网络。 那么有哪些地方变化了呢?卷积
卷积神经网络和前几次介绍的神经网络非常相似:它们都是由神经元组成,神经元中有具有学习能力的权重和偏差。每个神经元都得到一些输入数据,进行内积运算后再进行激活函数运算。整个网络依旧是一个可导的评分函数:该函数的输入是原始的图像像素,输出是不同类别的评分。在最后一层(往往是全连接层),网络依旧有一个损失函数(比如SVM或Softmax),并且在神经网络中我们实现的各种技巧和要点依旧适用于卷积神经网络。
实际上,很少的人会训练整个卷积神经网络(使用随机的初始化),因为相对来说,很少有足够大的数据集可以用于训练。作为代替,常见的方式是在一个很大的数据集中预训练一个卷积神经网络(比如ImageNet,120万张1000类别图片),然后或者将这个训练后的网络参数作为初始化参数,或者直接作为一个特质提取器用于所关注的任务。三种常见的迁移学习类型如下所示:
卷积神经网络(Convolutional Neural Network, CNN),对于图像处理有出色表现,在计算机视觉中得到了广泛的应用。
作者:陈之炎 本文约2000字,建议阅读5分钟本文让你读懂卷积神经网络。 2022年有专家曾经预测:在视觉领域,卷积神经网络(CNN)会和Transformer平分秋色。随着Vision Transformers (ViT)成像基准SOTA模型的发布, ConvNets的黎明业已到来,这还不算:Meta和加州大学伯克利分校的研究认为, ConvNets模型的性能优越于ViTs。 在视觉建模中,虽然Transformer很快取代了递归神经网络,但是对于那些小规模的ML用例, ConvNet的使用量会出现陡降。
作为 Facebook 人工智能部门主管, Yann LeCun 是 AI 领域成绩斐然的大牛,也是行业内最有影响力的专家之一。 近日,LeCun在卡内基梅隆大学机器人研究所进行了一场 AI 技术核心问题与发展前景的演讲。他在演讲中提到三点干货: 1. 无监督学习代表了 AI 技术的未来。 2. 当前 AI 应用的热点集中在卷积神经网络。 3. 用模拟器提高无监督学习的效率是大势所趋。 演讲完整视频如下。该视频长 75 分钟,并包含大量专业术语,因此雷锋网节选关键内容做了视频摘要,以供读者浏览。 以下
卷积神经网络由输入层(input layer)、卷积层(convolution layer)、池化层(pooling layer)、全连接层(fully connected layer)和输出层(output layer)组成。
本系列为 斯坦福CS231n 《深度学习与计算机视觉(Deep Learning for Computer Vision)》的全套学习笔记,对应的课程视频可以在 这里 查看。更多资料获取方式见文末。
英文原文:https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
典型的卷积神经网络由卷积层、池化层、全连接层构成。在这里以LeNet5网络来说明,下图是这个网络的结构:
经过一段漫长时期的沉寂之后,人工智能正在进入一个蓬勃发展的新时期,这主要得益于深度学习和人工神经网络近年来取得的长足发展。更准确地说,人们对深度学习产生的新的兴趣在很大程度上要归功于卷积神经网络(CNNs)的成功,卷积神经网络是一种特别擅长处理视觉数据的神经网络结构。
本文将以 Alex-Net、VGG-Nets、Network-In-Network 为例,分析几类经典的卷积神经网络案例。
监督学习是从标记的训练数据来推断一个功能的机器学习任务。训练数据包括一套训练示例。在监督学习中,每个实例都是由一个输入对象(通常为矢量)和一个期望的输出值(也称为监督信号)组成。监督学习算法是分析该训练数据,并产生一个推断的功能,其可以用于映射出新的实例。一个最佳的方案将允许该算法来正确地决定那些看不见的实例的类标签。这就要求学习算法是在一种“合理”的方式从一种从训练数据到看不见的情况下形成。
【编者按】三大牛Yann LeCun、Yoshua Bengio和Geoffrey Hinton在深度学习领域的地位无人不知。为纪念人工智能提出60周年,最新的《Nature》杂志专门开辟了一个“人工智能 + 机器人”专题 ,发表多篇相关论文,其中包括了Yann LeCun、Yoshua Bengio和Geoffrey Hinton首次合作的这篇综述文章“Deep Learning”。本文为该综述文章中文译文的下半部分,详细介绍了CNN、分布式特征表示、RNN及其不同的应用,并对深度学习技术的未来发展进行展
神经网络是机器学习算法,我们可以将其用于许多应用,例如图像分类、对象识别、预测复杂模式、处理语言等等。神经网络的主要组成部分是层和节点。
在科学研究中,从方法论上来讲,都应“先见森林,再见树木”。当前,人工智能学术研究方兴未艾,技术迅猛发展,可谓万木争荣,日新月异。对于AI从业者来说,在广袤的知识森林中,系统梳理脉络,才能更好地把握趋势。为此,我们精选国内外优秀的综述文章,开辟“综述专栏”,敬请关注。
Facebook的使命是让世界变得更加开放,让每个人都能以最高的准确性和最快的速度使用自己喜欢的语言来发帖子和视频进行互动,语言翻译对此十分重要。 今天,Facebook的人工智能研究团队发表了他们的研究成果Fairseq,他们使用了一种新型的卷积神经网络来做语言翻译,比循环神经网络的速度快了9倍,而且准确性也是现有模型中最高的。此外,FAIR序列建模工具包的源代码和训练好的系统都已经在开源平台GitHub上公布,其他的研究者可以在此基础上建立自己的关于翻译、文本总结和其他任务的模型。 为什么选择卷积神经网
本篇分享论文Graph Convolutional Network for Image Restoration: A Survey,由西工大&西澳大学&同济大学共同发布,第一篇图卷积网络在图像复原上综述(论文开源)。
受Hubel和Wiesel对猫视觉皮层电生理研究启发,有人提出卷积神经网络(CNN),Yann Lecun 最早将CNN用于手写数字识别并一直保持了其在该问题的霸主地位。近年来卷积神经网络在多个方向持续发力,在语音识别、人脸识别、通用物体识别、运动分析、自然语言处理甚至脑电波分析方面均有突破。
在计算机视觉领域,通常要做的就是指用机器程序替代人眼对目标图像进行识别等。那么神经网络也好还是卷积神经网络其实都是上个世纪就有的算法,只是近些年来电脑的计算能力已非当年的那种计算水平,同时现在的训练数据很多,于是神经网络的相关算法又重新流行起来,因此卷积神经网络也一样流行。
由于卷积层可以有多个卷积核,各个卷积核之间的处理方式是完全相同的,为了简化算法公式的复杂度,下面推导时只针对卷积层中若干卷积核中的一个。
领取专属 10元无门槛券
手把手带您无忧上云