比赛链接 https://www.heywhale.com/home/competition/620b34ed28270b0017b823ad/content/3 1 赛题背景 京东商品标题包含了商品的大量关键信息...,商品标题实体识别是NLP应用中的一项核心基础任务,能为多种下游场景所复用,从标题文本中准确抽取出商品相关实体能够提升检索、推荐等业务场景下的用户体验和平台效率。...本赛题要求选手使用模型抽取出商品标题文本中的实体。 与传统的实体抽取不同,京东商品标题文本的实体密度高、实体粒度细,赛题具有特色性。...值得注意的是实体不仅仅与实体词有关,而且与当前标题所售卖商品有关。...举例说明,一个售卖产品为手机壳的商品标题中出现的“iPhone13”与售卖产品为手机的商品标题中出现的“iPhone13”为不同的实体标签。
当你在网上选购商品时,同类的商品成千上万,哪些因素会影响你选购某件商品呢?商品评论一定是一个重要的参考吧。一般我们总会看看历史销量高不高,用户评论好不好,然后再去下单。...过去不久的双11、双12网络购物节中,无数网友在各个电商网站的促销大旗下开启了买买买模式。不过,当你在网上选购商品时,同类的商品成千上万,哪些因素会影响你选购某件商品呢?...事实上,许多精明的淘宝卖家会在双十一等网购高峰期售卖“爆款”,“干一票就撤”,这正是虚假评论的温床。...我们特意选取了具有刷单倾向的商品,可以看出,其中许多评论日期连续、会员名相似、买家等级较低;经过人眼识别,刷单评论占比约30%。...我们意在使用这些数据去构建刷单评论识别模型,然后可以用这里得出来的规则去识别其它鞋类商品的刷单评论。
11.11智惠云集,音视频通信产品选购攻略来喽~ 活动时间:11月1日—11月30日 短信套餐包新用户专享18.8元/1000条,TRTC/直播/点播套餐包低至9元,IM续费7.5折起,更有直播秒杀和技术干货分享
摘自:毕马威大数据挖掘 微信号:kpmgbigdata 刚刚过去的双11、双12网络购物节中,无数网友在各个电商网站的促销大旗下开启了买买买模式。...不过,当你在网上选购商品时,同类的商品成千上万,哪些因素会影响你选购某件商品呢?商品评论一定是一个重要的参考吧。一般我们总会看看历史销量高不高,用户评论好不好,然后再去下单。...事实上,许多精明的淘宝卖家会在双十一等网购高峰期售卖“爆款”,“干一票就撤”,这正是虚假评论的温床。...有时我们选购商品,经常会发现许多条看起来十分夸张的评论,如某女鞋的商品评论: “超级好看的鞋,随便搭配衣服就觉得自己像女神,又不磨脚,站一天都不会累。下次还来买,赶快上新款哦!”...我们意在使用这些数据去构建刷单评论识别模型,然后可以用这里得出来的规则去识别其它鞋类商品的刷单评论。
刚刚过去的双11、双12网络购物节中,无数网友在各个电商网站的促销大旗下开启了买买买模式。不过,当你在网上选购商品时,同类的商品成千上万,哪些因素会影响你选购某件商品呢?...事实上,许多精明的淘宝卖家会在双十一等网购高峰期售卖“爆款”,“干一票就撤”,这正是虚假评论的温床。...有时我们选购商品,经常会发现许多条看起来十分夸张的评论,如某女鞋的商品评论: “超级好看的鞋,随便搭配衣服就觉得自己像女神,又不磨脚,站一天都不会累。下次还来买,赶快上新款哦!”...我们特意选取了具有刷单倾向的商品,可以看出,其中许多评论日期连续、会员名相似、买家等级较低;经过人眼识别,刷单评论占比约30%。...我们意在使用这些数据去构建刷单评论识别模型,然后可以用这里得出来的规则去识别其它鞋类商品的刷单评论。
ArcFace: Additive Angular Margin Loss for Deep Face Recognition(CVPR2019) 简 介 利用深度卷积神经网络(DCNNs)进行大规模人脸识别特征学习的一大挑战是设计合适的损失函数以提高识别能力...在本文中,我们提出了一个附加的角Margin损失(ArcFace)来获得高分辨的人脸识别特征。由于与超球面上的测地距离精确对应,所提出的弧面具有清晰的几何解释。...背 景 目前训练人脸识别的DCNN方案主要有两种: 训练一个多分类器,它可以将训练集合中的不同实体分开; 训练embeddings,例如triplet loss。...但是softmax的loss和triplet loss都存在一些缺点, 对于softmax来说: 线性转化矩阵和是线性相关的; 学习得到的特征对于闭集分类问题是可分离的,而对于开集人脸识别问题,学习到的特征是不可分辨的...ArcFace相较于Triplet-Loss有更好的margin; 小结 本文提出了一种Additive Angular Margin Loss ,该函数能有效地提高DCNNs学习的特征嵌入在人脸识别中的判别能力
基于Bert进行实体识别任务微调 所需要的pip包 pandas numpy sklearn pytorch transformers: https://github.com/...torch import cuda device = 'cuda' if cuda.is_available() else 'cpu' print(device) cuda 数据处理 比赛数据下载地址:商品标题实体识别
---- ©作者 | 康洪雨 单位 | 有赞科技 研究方向 | NLP/推荐算法 来自 | PaperWeekly 最近一段时间在做商品理解的工作,主要内容是从商品标题里识别出商品的一些属性标签,包括不限于品牌...▲ 商品理解示例,品牌:佳丰;口味:蒜香味 本文主要记录下做这个任务上遇到的问题,踩的坑,模型的效果等。...主要内容: 怎么构建命名实体识别(NER)任务的标注数据 BertCRF 训练单标签识别过程及踩坑 BertCRF 训练超多标签识别过程及踩坑 CascadeBertCRF 训练超多标签识别过程及踩坑...而且抽出的字一般都是标题前 1、2 个字,这与商品品牌一般都在标题前面有关。...多标签样本是指一个标题中包含多个标签,比如下面这个商品包含 5 个标签。
2 基于EasyDL零售版的商品识别方案 将终端数据转化为数字资产 百度飞桨EasyDL零售版,针对快消零售业提供专业版服务,实现了低成本、高精度获取商品图像识别模型,完成智能化的店内陈列与费用核销。...通过 EasyDL 零售版,可以训练包含但不限于本品 SKU、竞品 SKU、POSM 助销物料、价签与价格等识别对象。...同时,还配套提供货架拼接、翻拍识别、空位识别、商品陈列层数识别、商品陈列场景识别等通用能力,从业务实际需求出发,有效获取网点真实商品分销和陈列数据,推动实时预警、及时跟进的市场策略落地,帮助快消品牌商顺利完成经营模式的数字化转型
在全网电商中,天猫双11全球狂欢节全天交易额912.17亿元,无线成交626.42亿元,无线占比68.67%。 这是创造消费奇迹的一天,超越电商自我评判的一天,不断刷新纪录的一天。...在双十一前夕,媒体认为马云的手势暗示900亿。而实际上,马云给的那个手势代表七。...这个双十一的狂欢已经过去,我们既消费了”双十一“的盛况,也消费了电商的产品。静下心来,好好想想,或者下一个光棍节双十一又有新的记录诞生,并崛起更多的马云、任正非、雷军....... 来源:产业前沿
利用深度卷积神经网络(DCNNs)进行大规模人脸识别特征学习的一大挑战是设计合适的损失函数以提高识别能力。...在本文中,我们提出了一个附加的角Margin损失(ArcFace)来获得高分辨的人脸识别特征。由于与超球面上的测地距离精确对应,所提出的弧面具有清晰的几何解释。...目前训练人脸识别的DCNN方案主要有两种: 训练一个多分类器,它可以将训练集合中的不同实体分开; 训练embeddings,例如triplet loss。...但是softmax的loss和triplet loss都存在一些缺点, 对于softmax来说: 线性转化矩阵和是线性相关的; 学习得到的特征对于闭集分类问题是可分离的,而对于开集人脸识别问题,学习到的特征是不可分辨的...本文提出了一种Additive Angular Margin Loss ,该函数能有效地提高DCNNs学习的特征嵌入在人脸识别中的判别能力。
前言 一个群友用琨君的美颜录制和讯飞离线人脸识别SDK做了一个demo,功能是录制视频,要求有美颜,并且能识别人脸并放置贴图。...但是遇到一个问题: 录制过程能过进行人脸识别,也有美颜效果; 但是录制的视频,有美颜效果,但没有贴图; 在帮忙查找bug的过程中,发现代码写得略复杂,不便于学习。...人脸识别相关 IFlyFaceDetector IFlyFaceDetector是讯飞提供的本地人脸检测类,可以人脸检测、视频流检测功能。...通过检查人脸识别的输出结果,确定人脸识别的输出是正常; 检查canvasView的更新,发现问题: canvasView没有更新。 解决方案是把canvasView添加到视图层。...因为是每帧识别,所以CPU的消耗较高。 如果是实际应用,可以考虑3~5帧左右做一次人脸识别。 还有另外一个简单的思路:把输入从摄像头变成视频,对视频进行逐帧人脸识别并吧贴图合并到视频中。
各平台“内卷”双十一进入10月后,各电商平台先后公布双十一优惠活动细节,我们梳理了天猫、京东、抖音、快手四大典型电商平台的2022年双十一的运营策略, 发现上述平台的运营各有侧重,对这次大促似乎志在必得...并配以双档位促销优惠,分别为“每299元减50元”和“每1000元减100元”,均封顶40000元,活动期间同一款商品仅可参与其中一档促销。...苏宁易购则升级了30天内买贵补差价,用户在苏宁易购选购带有"30天价保"标识商品,均可享受30天价保服务。从用户收到货开始算起,价保服务最长可延至12月。...据天猫公布的数据,在2021年双十一期间,欧莱雅集团更是成为天猫首次出现的两大百亿品牌之一。...,财通证券《美妆:减重赛道蓝海风起,双“11”渐近大促将至》,首创证券《淘系美妆销售回暖,关注品牌商双“11”备战》,国金证券参考资料:《直播电商竞争白热化,多直播机构加码布局淘宝直播,双十一开启新增量
人脸识别已经逐渐渗透我们的日常生活,机器能够认准人脸,想必大家都有所耳闻;而另一类计算机视觉的应用,是进行商品识别。...当前新兴的一些无人零售店,背后就需要机器对商品进行自动识别,拍图购物、AR互动营销等场景,也运用了商品识别技术。...今天,图酱就跟大家科普应用在无人店、新零售中的商品识别技术。...研究组,则要克服各种疑难杂症,比如容易产生褶皱的软包装、商品侧面和背面的识别、遮挡和反光环境下的识别等等。 ? 目前,在实际生产环境下,已经达到95%以上的识别准确率。...人脸都有眼睛、鼻子、嘴巴等固定的特征,而超市中琳琅满目的商品,则千奇百态。与人脸识别相比,商品识别有更高的工程复杂度。
无数网友在各个电商网站的促销大旗下开启买买买模式,不过,当你在网上选购商品时,同类的商品成千上万,哪些因素会影响你选购某件商品呢?商品评论一定是一个重要的参考吧。...事实上,许多精明的淘宝卖家会在双十一等网购高峰期售卖“爆款”,“干一票就撤”,这正是虚假评论的温床。...有时我们选购商品,经常会发现许多条看起来十分夸张的评论,如某女鞋的商品评论: “超级好看的鞋,随便搭配衣服就觉得自己像女神,又不磨脚,站一天都不会累。下次还来买,赶快上新款哦!”...我们特意选取了具有刷单倾向的商品,可以看出,其中许多评论日期连续、会员名相似、买家等级较低;经过人眼识别,刷单评论占比约30%。...我们意在使用这些数据去构建刷单评论识别模型,然后可以用这里得出来的规则去识别其它鞋类商品的刷单评论。
阿里云又挂了就在双十一热火朝天的进行时,阿里云又双叒出问题了为什么说又,因为就在不久前,语雀就因为云服务问题出现了故障,在8小时后才得以恢复。
比赛简介 主办方提供了商品名称和用户query数据供选手进行模型训练,希望选手能够设计出一套高效、精准的商品意图识别模型,以帮助提升电商搜索的效果,改善顾客的购买体验。...其中提供了两份数据,一个是goods_data.csv是商品名称数据,一个是query_data.csv是用户query数据,共39470条 前期我们做的尝试比较多,后面差不多烂尾了,庆幸b榜还在第一页...文本长度统计如下:商品名称数据中 文本字符长度最大为39,最小为6。我们在训练中选择了覆盖绝大部分数据长度的大小26,其余没有做过多尝试。
作者 | 康洪雨 单位 | 有赞科技 整理 | PaperWeekly 最近一段时间在做商品理解的工作,主要内容是从商品标题里识别出商品的一些属性标签,包括不限于品牌、颜色、领型、适用人群、尺码等等...▲ 商品理解示例,品牌:佳丰;口味:蒜香味 本文主要记录下做这个任务上遇到的问题,踩的坑,模型的效果等。...主要内容: 怎么构建命名实体识别(NER)任务的标注数据 BertCRF 训练单标签识别过程及踩坑 BertCRF 训练超多标签识别过程及踩坑 CascadeBertCRF 训练超多标签识别过程及踩坑...而且抽出的字一般都是标题前 1、2 个字,这与商品品牌一般都在标题前面有关。...多标签样本是指一个标题中包含多个标签,比如下面这个商品包含 5 个标签。
"商品识别"、"人脸识别"、"以图搜图"有什么难?这个在 GitHub 上狂圈 Star 3100+ 的项目就能轻松帮你实现! 它就是全开源、轻量级的图像识别系统 PP-ShiTu。...当然不是,一个优秀的图像识别系统往往在处理实际场景问题过程中需要面临各种挑战: 1.商品类别数以万计:根本没法事先把所有类别都放入训练集; 2.不同商品相似度极高:比如同一种饮料的不同口味,就很可能拥有非常类似的包装...,同时对于商品识别中品类众多、外观相似和更新频繁的痛难点也提供了可参考的示范。...其实商品识别的能力远不仅如此,商超能够通过这项技术进行资产保护,降低运营成本;时尚行业能够通过这项技术,完成对秀场服装的大数据分析,把握时尚潮流;服装行业可以通过商品识别快速匹配产品材质和生产工艺等相关信息...未来,从设计到生产、从物流到销售,AI 商品识别,大有可为! 如果您想详细了解更多飞桨的相关内容,请参阅以下文档。
商品系统的设计与构建,从某种程度上来讲,就是围绕SPU和SKU来进行的。但是只有这两个粗浅的概念,并不足以描述一个商品信息,今天,我们一起来聊一聊商品到底有哪些信息,进一步完善商品系统的设计。 ?...说到商品的基本信息,我们不妨回过头来看看商品的发布流程。从页面上去寻找需要持久化的信息,从而达到抽象商品信息的目的。 ?...我们先看商品的基础信息,从页面直观的可以看出,有商品类型、商品名称,以及商品类目属性构成。...需要注意的是商品类型这个属性,考虑到我们构建的是一个B2C的站点,同时还需要兼容多商家2C的设计,那么应该从商品的售卖方去区分商品是属于自营还是第三方。...在编辑商品的时候,一般会要求填写条形码,如果一个商品是有条形码如果存在的话,那么这个条形码会在很多地方用到,比如采购、仓库、出纳,也有利于建立一套标准的商品编码。
领取专属 10元无门槛券
手把手带您无忧上云