首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    2024年腾讯云双十一活动攻略:省钱玩法和精选推荐清单【腾讯云双十一活动攻略】

    以下是详细的活动解读、薅羊毛省钱攻略和产品推荐清单,帮大家高效地利用这次双十一活动。...行业/领域推荐清单以下是针对不同业务场景和行业的双十一推荐产品,适合各种开发者的需求:1. 轻量应用服务器推荐理由:轻量应用服务器非常适合个人开发者和小型团队,双十一价格低至几元/月。...双十一活动的充值返现也使其性价比提升。适用场景:电商图片库、视频存储、文件备份。推荐配置:按需计费模式,可根据需求选择容量大小。5....推荐配置:按流量包购买,适合流量较大的项目,双十一折扣适合大流量项目锁定低价。 双十一总结与购物建议2024年的腾讯云双十一活动为开发者和企业提供了绝佳的上云时机。...通过以上攻略和推荐清单,可以帮助开发者和企业在2024年双十一活动中用最少的预算获得最佳云服务,为接下来的项目提供坚实的基础。希望这份攻略能助力大家高效薅羊毛,享受双十一带来的云上盛宴!

    21721

    【OpenCV人脸识别入门教程之二】人脸检测

    一、OpenCV人脸检测 要实现人脸识别功能,首先要进行人脸检测,判断出图片中人脸的位置,才能进行下一步的操作。...1、OpenCV人脸检测的方法 在OpenCV中主要使用了两种特征(即两种方法)进行人脸检测,Haar特征和LBP特征。 在OpenCV中,使用已经训练好的XML格式的分类器进行人脸检测。...haar”特征主要用于人脸检测,“hog”特征主要用于行人检测,“lbp”特征主要用于人脸识别。...在实际使用中,推荐使用上图中被标记的“haarcascade_frontalface_alt2.xml”分类器文件,准确率和速度都比较好。...Size(): 表示人脸的最大最小尺寸 二、代码实现 1、检测图片中的人脸 //头文件 #include #include<opencv2

    79720

    人脸识别系列二 | FisherFace,LBPH算法及Dlib人脸检测

    前言 前面介绍了使用特征脸法进行人脸识别,这里介绍一下OpenCV人脸识别的另外两种算法,一种是FisherFace算法,一种是LBPH算法。...由于LDA算法与PCA算法很相似,我们简单的对二者做一个比较。LDA和PCA算法的相似之处在于: 在降维的时候,两者都使用了矩阵的特征分解思想。 两者都假设数据符合高斯分布。...KBPH是Local Binary Patterns Histograms的缩写,翻译过来就是局部二进制编码直方图。该算法基于提取图像特征的LBP算子。如果直接使用LBP编码图像用于人脸识别。...通过对图片的上述处理,人脸图像的特征便提取完了。 当需要进行人脸识别时,只需要将待识别人脸数据与数据集中的人脸特征进行对比即可,特征距离最近的便是同一个人的人脸。...利用支持向量机算法训练正负样本,显然这是一个二分类问题,可以得到训练后的模型。 利用该模型进行负样本难例检测,也就是难分样本挖掘(hard-negtive mining),以便提高最终模型的分类能力。

    3.2K30

    人脸识别(二)——训练分类器

    一、关于ORL人脸数据库 ORL是一个40个人,每人采取10张人脸头像构成的一个人脸数据库,尺寸全部为92*112。分为40个文件夹,即每个文件夹中包含有10张人脸照片,为pgm格式。 ?...如果想看下这些人脸图是怎样的,可以使用opencv的imshow函数进行读取哦…… 二、添加进自己的人脸数据 上面截图中可以看出,笔者采集了自己的照片,这一步需要有几个注意点: 1.放入的图片格式不一定要...同时opencv自带了三个人脸识别算法:Eigenfaces,Fisherfaces 和局部二值模式直方图 (LBPH)。直接调用这三种算法很简单,一般都是三句话足够: ?...csv文件中包含两方面的内容,一是每一张图片的位置所在,二是每一个人脸对应的标签,就是为每一个人编号。这个at.txt就是我们需要的csv文件。...【往期推荐】 老司机带你用python来爬取妹子图 千元资料免费送——人工智能相关(100G+) 资源福利第三弹——Python等教程(包括部分爬虫入门教程) 程序员面试必备之排序算法汇总(上) 程序员面试必备之排序算法汇总

    2.9K90

    人脸识别(二)——训练分类器

    一、关于ORL人脸数据库 ORL是一个40个人,每人采取10张人脸头像构成的一个人脸数据库,尺寸全部为92*112。分为40个文件夹,即每个文件夹中包含有10张人脸照片,为pgm格式。 ?...如果想看下这些人脸图是怎样的,可以使用opencv的imshow函数进行读取哦…… 二、添加进自己的人脸数据 上面截图中可以看出,笔者采集了自己的照片,这一步需要有几个注意点: 1.放入的图片格式不一定要...同时opencv自带了三个人脸识别算法:Eigenfaces,Fisherfaces 和局部二值模式直方图 (LBPH)。直接调用这三种算法很简单,一般都是三句话足够: ?...csv文件中包含两方面的内容,一是每一张图片的位置所在,二是每一个人脸对应的标签,就是为每一个人编号。这个at.txt就是我们需要的csv文件。...之后便是一些处理,将摄像头采集到的图像检测出人脸,再将人脸处理成指定格式,调用predict函数进行识别,和库内数据比较即可。 具体全面的程序和项目代码将在下一篇给出!

    2.4K50

    图片人脸检测——OpenCV版(二)

    图片人脸检测 人脸检测使用到的技术是OpenCV,上一节已经介绍了OpenCV的环境安装,点击查看....功能展示 识别一种图上的所有人的脸,并且标出人脸的位置,画出人眼以及嘴的位置,展示效果图如下:  ? 多张脸识别效果图:  ?...技术实现思路 图片转换成灰色(去除色彩干扰,让图片识别更准确) 图片上画矩形 使用训练分类器查找人脸 具体实现代码 图片转换成灰色 使用OpenCV的cvtColor()转换图片颜色,代码如下: import...在使用OpenCV的人脸检测之前,需要一个人脸训练模型,格式是xml的,我们这里使用OpenCV提供好的人脸分类模型xml,下载地址:https://github.com/opencv/opencv/...for faceRect in faceRects: # 单独框出每一张人脸 x, y, w, h = faceRect # 框出人脸 cv2

    79930

    图片人脸检测——OpenCV版(二)

    图片人脸检测 人脸检测使用到的技术是OpenCV,上一节已经介绍了OpenCV的环境安装,点击查看....功能展示 识别一种图上的所有人的脸,并且标出人脸的位置,画出人眼以及嘴的位置,展示效果图如下:  ? 多张脸识别效果图:  ?...技术实现思路 图片转换成灰色(去除色彩干扰,让图片识别更准确) 图片上画矩形 使用训练分类器查找人脸 具体实现代码 图片转换成灰色 使用OpenCV的cvtColor()转换图片颜色,代码如下: import...在使用OpenCV的人脸检测之前,需要一个人脸训练模型,格式是xml的,我们这里使用OpenCV提供好的人脸分类模型xml,下载地址:https://github.com/opencv/opencv/...for faceRect in faceRects: # 单独框出每一张人脸 x, y, w, h = faceRect # 框出人脸 cv2

    1.2K100

    程序员双十一好物必买推荐:服务器

    下面,就来看看为什么囤服务器是双十一程序员购物清单上的明智选择,以及如何挑选最适合你的服务器方案。 一、为什么程序员要在双十一囤服务器?...趁双十一促销提前锁定三年期的低价,不仅省钱,而且免去了频繁续费的麻烦。 二、服务器的选择建议 服务器并不是“买最贵的就好”,而是要根据具体需求进行选择。...以下是一些服务器配置的选择建议: 轻度开发者 & 学习用途 推荐配置:1 核 2G 内存,1M 带宽,20-40GB 存储 推荐对象:适合初学者、个人开发者或小项目的部署和测试。...中小型项目开发者 推荐配置:2 核 4G 内存,3-5M 带宽,50-100GB 存储 推荐对象:适合中小型项目的开发者,如 API 服务、Web 应用,或小团队项目的托管。...企业级应用 & 高负载需求 推荐配置:4 核及以上,8G 或以上内存,5-10M 带宽,100GB+ 存储 推荐对象:适合中小型企业或需高负载处理的项目使用。

    27221

    深度学习之视频人脸识别系列二:人脸检测与对齐

    其中第二个网络之后、第四个网络之后、第五个网络之后使用NMS算法过滤掉冗余的框。...然后通过人脸局部图根据评分构建人脸候选区域,具体如下图所示: 第二个步骤:训练一个多任务的卷积网络来完成人脸二分类和矩形框坐标回归,进一步提升其效果,具体如下图所示: Faceness从脸部特征的角度来解决人脸检测中的遮挡和姿态角度问题...如下图所示: 第二阶段:第一阶段输出的候选人脸框作为更为复杂的R-Net网络的输入,R-Net进一步筛除大量错误的候选人脸框,同样也通过NMS过滤掉高重叠率的候选窗口。...如下图所示: 第三阶段:与第二阶段类似,最终网络输出人脸框坐标、关键点坐标和人脸分类(是人脸或不是)。...兼并了速度与准确率,速度在GPU上可以达到99FPS,在 FDDB数据集上可以达到95.04准确率,具体如下图所示: 二、人脸对齐(部分参考于GraceDD的博客文章) 人脸对齐通过人脸关键点检测得到人脸的关键点坐标

    2.1K20
    领券