GeaFlow(品牌名TuGraph-Analytics) 已正式开源,欢迎大家关注!!! 欢迎给我们 Star 哦! GitHub👉https://github.com/TuGraph-family/tugraph-analytics
在互联网时代,图数据越来越多地呈现出海量和动态等特性,静态图计算的模型和方法难以应对数据处理的需求。而流式图计算能基于实时变化的数据,流式地构建动态图数据关系,并基于动态变化的图数据之上实时地进行分析、计算和挖掘,是图计算主流技术分支。 InfoQ 作为技术媒体对技术趋势保持着格外的关注,本次我们采访了蚂蚁流式图计算团队负责人潘臻轩。流式图计算是蚂蚁大规模图计算系统 TuGraph 的重要组成部分,可以有效地挖掘数据关系变化的趋势和异动,承担着重要的近线异步图计算等功能。潘臻轩为我们分享了蚂蚁流式图计算的应用经验,以及图计算在未来的发展趋势。
在实时计算领域,Apache Storm、Samza、Spark Streaming、Kafka Stream、Flink 等开源流式计算引擎层出不穷,呈现百家争鸣之势,Google 也顺势推出了开源的 Beam 计算框架标准。
剩喜漫天飞玉蝶,不嫌幽谷阻黄莺。2020 年是不寻常的一年,Flink 也在这一年迎来了新纪元。
最近开始上手一个大数据离线数仓项目。本篇博客先为大家进行一个总体的介绍,包括各个阶段的任务以及项目的简介,环境,需求等等…
机器之心原创 作者:徐丹 11 月 11 日零点刚过 26 秒,天猫双十一订单峰值产生,58.3 万笔 / 秒。 11 月 1 日零点至 11 月 11 日零点 30 分,今年整个双十一成交额破 3723 亿,实时成交额超过 1 亿元的品牌超过 300 个。 这是今年阿里交出的双十一成绩单。不断增长的订单数据背后,今年的消费体验也出现了很多变化,付款不再卡顿、快递速度极快… 盛大的消费狂欢过去后,来盘点一下,阿里用什么技术撑住了双十一? 一、阿里双十一技术发展史,从去 IOE 说起 从最底层来说,支撑双十一
👆点击“博文视点Broadview”,获取更多书讯 随着大数据行业的发展,大数据生态圈中相关的技术也在一直迭代进步,作者有幸亲身经历了国内大数据行业从零到一的发展历程,通过本文希望能够帮助大家快速构建大数据生态圈完整知识体系。 目前大数据生态圈中的核心技术总结下来如图1所示,分为以下9类,下面分别介绍。 图1 1 数据采集技术框架 数据采集也被称为数据同步。 随着互联网、移动互联网、物联网等技术的兴起,产生了海量数据。这些数据散落在各个地方,我们需要将这些数据融合到一起,然后从这些海量数据中计算出一些
相信大数据人对这两年冉冉升起的新星 Flink 都不陌生,Flink是一款构建在数据流之上的有状态计算框架,通常被视为第三代大数据分析方案。
今天在移动端,尤其是像手机淘宝这样的 app 中,动态性问题逐渐成为一个比较棘手的问题。所谓动态性,就是把移动应用本身的灵活性、迭代更新的周期和成本优化到极致。比如手机淘宝的店铺首页,它允许商家实时装修自己的店铺,更新自家的商品、活动等信息;再比如淘宝、天猫每次大促的会场页面,要求我们非常灵活的及时调整界面信息和状态,确保在瞬息万变的活动当天紧跟促销节奏,应对各种突发情况。
嘉宾 | 陈锣斌 编辑 | 李忠良 随着行业进入数字化转型深水区,众多业内机构都意识到,更复杂、更难对付的新型业务风险已经到来。不谈安全,便谈不上发展。如何让「风控」领先于「风险」,逐渐成为领域内最重要的议题之一。非常有幸,本次能够邀请到了蚂蚁集团大安全事业群首席技术架构陈锣斌,他为我们讲述了蚂蚁集团几代风控平台的演进、蚂蚁集团数据安全策略以及未来风控的发展方向,期待您对风控有更多了解。 1 风控平台一代到五代的发展历程和挑战 InfoQ:陈老师,简单介绍下您目前主要负责的工作? 陈锣斌:我目前
Spark适用于各种各样原本需要多种不同的分布式平台的场景,包括批处理,迭代计算,交互式查询,流处理,通过在一个统一的框架下支持这些不同的计算,Spark使我们可以简单而低耗地把各种处理流程整合在一起。
“双十一”、“双十二”期间是所有电商行业的流量高峰期,作为一个电商网站,如果不能保障流畅运行,将会对企业造成巨大的经济损失。回顾去年天猫“双十一”,当天日活跃用户到达峰值3.56亿,交易创建峰值32.5万笔/秒、支付峰值25.6万笔/秒。在这样的购物狂欢下,你的网站是否已经做好了应对“双十一”、“双十二”的流量高峰呢?
4月24日,浙江大学召开OpenKS(知目)知识计算引擎开源项目发布会,宣布浙大与合作单位研发的OpenKS知识计算引擎取得重大进展。中国工程院院士、国家新一代人工智能战略咨询委员会组长、浙江大学计算机学院教授潘云鹤说,本次发布的OpenKS,作为知识计算引擎项目中的基础软件架构,定义并丰富了知识计算的内涵,是我国在大数据人工智能方向的又一次有益尝试。
这个属性对我来说还真有些陌生,无意中发现的,查询过 MDN 之后听得挺有意思的,就记录一下。
互联网的业务无外乎线上OLTP场景和线下OLAP场景,这两种场景,数据量增大后,我们应该分别怎么应对呢。
导语:得益于调度单元是通用的SQL语句,SuperSQL能够做到与特定计算引擎解耦,也正因为此原因,SuperSQL只需专注在最优执行计划生成,并根据SQL具体类型选择最佳的计算引擎。 天穹SuperSQL是腾讯自研的跨数据源、跨数据中心、跨计算引擎的大数据SQL引擎,能够满足位于不同数据中心、不同类型数据源的数据联合分析/即时查询的需求。在腾讯整个天穹大数据图谱中,负责连接端与存储。 数据源无论是关系型数据库、NoSQL还是大数据系统;数据存储无论是跨集群还是跨数据中心;数据计算无论是报表生成、分析挖掘
有界数据集对开发者来说都很熟悉,在常规的处理中我们都会从Mysql,文本等获取数据进行计算分析。我们在处理此类数据时,特点就是数据是静止不动的。也就是说,没有再进行追加。又或者说再处理的当时时刻不考虑追加写入操作。所以有界数据集又或者说是有时间边界。在某个时间内的结果进行计算。那么这种计算称之为批计算,批处理。Batch Processing
近年来,随着深度学习技术的发展,越来越多的科技巨头开发自己的机器学习平台。昨日,华为宣布将与明年第一季度开源自家的 AI 框架 MindSpore,引起极大关注。
多年以来电子商务业务快速发展,尤其是移动客户端发展迅猛,移动互联网时代的到来让原本就方便快捷的网上购物变得更加便利,而淘宝作为国内最大的电商交易平台更是具有巨大的流量优势。
场景描述:继「双十一」之后,京东也借着店庆日,制造了与其遥相呼应的「618」年中购物狂欢节。而各大电商除了用各种营销手段吸引顾客外,也在利用智能推荐不断影响着用户的购物选择。推荐系统为交易额的增长带来了极大的贡献。 关键词:智能推荐系统 电商 购物节
本文从开发效率(易用性)、可扩展性、执行效率三个方面,介绍了微博机器学习框架Weiflow在微博的应用和最佳实践。 在上期《基于Spark的大规模机器学习在微博的应用》一文中我们提到,在机器学习流中,模型训练只是其中耗时最短的一环。如果把机器学习流比作烹饪,那么模型训练就是最后翻炒的过程;烹饪的大部分时间实际上都花在了食材、佐料的挑选,洗菜、择菜,食材再加工(切丁、切块、过油、预热)等步骤。在微博的机器学习流中,原始样本生成、数据处理、特征工程、训练样本生成、模型后期的测试、评估等步骤所需要投入的时间和精力
6月11日,2023开放原子全球开源峰会在北京开幕。本次峰会以“开源赋能,普惠未来”为主题。在高峰论坛上,蚂蚁技术研究院院长、图计算负责人陈文光宣布开源 TuGraph 图计算平台核心成员——工业级流式图计算引擎 TuGraph Analytics。
都怪这些购物软件太了解我的喜好,我脑子里想什么大聪明们就给我推什么、“引诱”我“剁手”,更何况各类折扣活动算得人云里雾里,如何才能占到最大的便宜将资金进行合理支配。
embedx 是基于 c++ 开发的、完全自研的分布式 embedding 训练和推理框架。它目前支持 图模型、深度召回模型和图与排序、图与召回的联合训练模型等。 embedx是腾讯 AI 领域开源协同项目,获得过开源协同优秀奖、微信最具技术价值文集奖等,经过近 3 年的迭代,已经趋向稳定和成熟,在设计和开发的过程中,参考了业界开源项目的大量经验,现将其开源反哺业界,希望该项目能持续的进行迭代。 项目链接请参考:https://github.com/Tencent/embedx 01 项目特点一: 效率高
流批一体是一种架构思想,这种思想说的是同一个业务,使用同一个sql逻辑,在既可以满足流处理计算同时也可以满足批处理任务的计算。
腾讯开源再次迎来重磅项目,14日,腾讯正式宣布开源高性能图计算框架Plato,这是在短短一周之内,开源的第五个重大项目。
腾讯开源再次迎来重磅项目,14日,腾讯正式宣布开源高性能图计算框架Plato,这是在短短一周之内,开源的第五个重大项目。 相对于目前全球范围内其它的图计算框架,Plato可满足十亿级节点的超大规模图计算需求,将算法计算时间从天级缩短到分钟级,性能全面领先领先于其它主流分布式图计算框架,并且打破了原本动辄需要数百台服务器的资源瓶颈,现在,最少只需要十台服务器即可完成计算。 腾讯Plato团队负责人于东海表示:“Plato已经支持腾讯内部包括微信在内的众多核心业务,尤其是为腾讯超大规模社交网络图数据的各类
Ali_Mum_Baby是一个包含超过900万儿童信息(生日和性别)的数据集,由消费者提供,他们共享这些信息是为了获得更好的推荐或搜索结果。本次数据共有两个csv。婴儿信息表
由 Microsoft Research 开发的 Graph Engine 1.0 预览版正式发布。Graph Engine 是一个基于内存的分布式大规模图数据处理引擎。在此之前,它在学术界更广为人之
本文包括七个小节:1、什么是数据湖;2、数据湖的基本特征;3、数据湖基本架构;4、各厂商的数据湖解决方案;5、典型的数据湖应用场景;6、数据湖建设的基本过程;7、总结。受限于个人水平,谬误在所难免,欢迎同学们一起探讨,批评指正,不吝赐教。
互联网技术的发展让大多数企业能够积累大量的数据,而企业需要灵活快速地从这些数据中提取出有价值的信息来服务用户或帮助企业自身决策。然而处理器的主频和散热遇到了瓶颈,CPU难以通过纵向优化来提升性能,所以多核这种横向扩展成为了主流。也因此,开发者需要利用多核甚至分布式架构技术来提高企业的大数据处理能力。这些技术随着开源软件的成功而在业界得到广泛应用。
GeaFlow(品牌名TuGraph-Analytics) 已正式开源,欢迎大家关注!!! 欢迎给我们 Star 哦! GitHub👉 https://github.com/TuGraph-family/tugraph-analytics
与其他图计算框架相比,将算法计算时间从天级缩短到分钟级,而且性能也全面领先,原本动辄需要数百台服务器的计算,现在最少只需要十台服务器。
随着大数据行业的发展,大数据生态圈中相关的技术也在一直迭代进步,作者有幸亲身经历了国内大数据行业从零到一的发展历程,通过本文希望能够帮助大家快速构建大数据生态圈完整知识体系。
为了满足日益增长的业务变化,京东的京麦团队在京东大数据平台的基础上,采用了Hadoop等热门的开源大数据计算引擎,打造了一款为京东运营和产品提供决策性的数据类产品-北斗平台。 Hadoop的应用业务分析 大数据是不能用传统的计算技术处理的大型数据集的集合。它不是一个单一的技术或工具,而是涉及的业务和技术的许多领域。 目前主流的三大分布式计算系统分别为:Hadoop、Spark和Strom: Hadoop当前大数据管理标准之一,运用在当前很多商业应用系统。可以轻松地集成结构化、半结构化甚至非结构化数据集。 S
【新热点】 拼多多三季报:不再烧钱换流量,陈磊把省下来的钱花哪儿了? “好物联盟”升级为“快分销”,快手电商掀起“供给侧改革 禁令解除!Meta(FB.US)允许加密货币公司投放广告播 淘宝直播双12推商家自播特别版,降低参与门槛 【新奇特】 字节跳动旗下火山引擎发布全系云产品 【新数据】 B站公布10月社区治理数据,处理31万违规账号 黑猫投诉:2021年“双十一”消费投诉数据报告 新热点 11月28日 拼多多三季报: 不再烧钱换流量,陈磊把省下来的钱花哪儿了? 11月26日,拼多多(PDD.NASD
导读:特征工程在推荐系统中有着举足轻重的作用,大规模特征工程处理的效率极大的影响了推荐系统线上的性能。第四范式作为国际领先的机器学习和人工智能技术与平台服务提供商,面向大规模特征工程问题开发了下一代离线在线一致性特征抽取引擎FESQL,针对AI场景支持SQL接口,兼容Spark 3.0同时提供高性能的Native执行引擎。本次分享题目为基于Spark的大规模推荐系统特征工程及优化,主要内容包括:
阿里双十一以571亿元交易额收官,在财务数据上,当天阿里获得数十亿规模的营收,核心模式便是围绕流量的广告。阿里上市之后的首个“大考”,并无系统宕机等问题,支撑可谓完善。阿里宣称本次移动取得重大突破,45%的交易额来自移动,移动流量更是超过PC流量两倍。这相当于在宣称,阿里已经顺利拿到移动船票——陆兆禧接受采访时已在暗示,此前做来往就是为了声东击西,阿里的移动化已经通过另外一条路走通了。阿里前路一片光明,其他玩家看上去却显得有几分落寞,果真如此吗? 双十一的本质是流量游戏 与传统卖场打折促销最大的不同是,双
提起大数据处理引擎,很多人会想到Hadoop或Spark,而在2019年,如果你身处大数据行业却没听说过Flink,那你很可能OUT了!Flink是大数据界冉冉升起的新星,是继Hadoop和Spark之后的新一代大数据处理引擎。2019年初,阿里巴巴以1.033亿美元的价格收购了总部位于德国柏林的初创公司Data Artisans,Data Artisans的核心产品是正是Flink。
大规模数据处理技术如果从MapReduce论文算起,已经前后跨越了十六年。我们先沿着时间线看一下大规模数据处理的重要技术和它们产生的年代。后面从MapReduce到Spark、Flink、Beam的演进特性来看大规模数据处理计算引擎应该具备什么样的能力。
Apache Spark 是一个统一的、快速的分布式计算引擎,能够同时支持批处理与流计算,充分利用内存做并行计算,官方给出Spark内存计算的速度比MapReduce快100倍。因此可以说作为当下最流行的计算框架,Spark已经足够优秀了。
随着大数据行业的发展,大数据生态圈中相关的技术也在一直迭代进步,作者有幸亲身经历了国内大数据行业从零到一的发展历程,通过本文希望能够帮助大家快速构建大数据生态圈完整知识体系。 目前大数据生态圈中的核心技术总结下来如图1所示,分为以下9类,下面分别介绍。 1 数据采集技术框架 数据采集也被称为数据同步。 随着互联网、移动互联网、物联网等技术的兴起,产生了海量数据。这些数据散落在各个地方,我们需要将这些数据融合到一起,然后从这些海量数据中计算出一些有价值的内容。此时第一步需要做的是把数据采集过来。数据采集是大
何谓计算引擎,一言以蔽之,就是专门处理数据的程序,在大数据之前,人们用数据库来处理数据,人们常说的SQL,它是一种DSL,它的背后正是数据库的计算引擎,但是数据库的计算和存储通常被集成在一起,统称为数据库引擎。
领取专属 10元无门槛券
手把手带您无忧上云