首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

双十二恶意样本智能识别哪里买

双十二恶意样本智能识别服务可以通过多种途径获取,以下是一些推荐的平台和服务:

推荐平台和服务

  • 国联易安:提供恶意代码辅助检测产品,具备智能行为分析与特征码匹配技术,能有效检测已知、变种和未知恶意代码程序。
  • Threatray:基于人工智能和机器学习的恶意软件检测和分析工具,通过深度代码分析技术和代码搜索引擎,提升企业防御恶意软件的安全水平。
  • 微步在线云沙箱:提供恶意文件自动化、可定制化的行为分析,结合700多个高质量行为签名,提升识别和分类恶意软件的关键行为。
  • 腾讯哈勃分析系统:腾讯反病毒实验室自主研发的安全辅助平台,支持上传样本并得知样本的基本信息、可能产生的行为、安全等级等等信息。

恶意样本智能识别的重要性

恶意样本智能识别服务对于保护个人和企业的网络安全至关重要。在双十二等购物高峰期,恶意软件可能会利用促销活动进行传播,如通过钓鱼网站、虚假红包等方式诱导用户泄露个人信息或财务信息。智能识别服务可以帮助及时发现和阻止这些威胁,减少潜在损失。

通过利用这些智能识别服务,个人用户和企业可以更加有效地防御恶意软件的攻击,保护自己的网络安全。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

什么是AI防火墙(AIFW)?

NGFW与AI防火墙主要能力对比 AI防火墙的主要优势在于“智能”,不再单纯依赖既定签名特征机械识别已经认识的威胁,而是通过大量样本和算法训练威胁检测模型,从而使防火墙可以自主检测高级未知威胁。...“智能”体现在哪里?智能就体现在AI防火墙内置的智能检测引擎,引擎通过机器学习获取的威胁检测模型检测高级威胁。...智能检测引擎中的检测模型主要有2种来源: 云端样本训练(监督学习) 在云端采用监督学习的方式对百万级数量的样本进行训练,提取威胁检测模型,然后将模型下发到防火墙执行检测。...监督学习与非监督学习可以更有效地检测频繁变种的恶意文件,发现失陷主机和被远程控制的肉鸡,监测数据加密外发窃取,识别慢速和分布式暴力破解等恶意行为。...AI防火墙采用智能恶意文件检测算法提取文件特征,而并非传统的规则库检测恶意文件,极大提升了检出率。

15400

技术分享|终端安全防护|ChatGPT会创造出超级恶意软件吗?

有人推测ChatGPT可以做一些事情,比如创建恶意代码变体,查找恶意软件,并测试新的威胁是否可以使用基于人工智能的技术逃避检测。这还有待观察,但滥用人工智能的可能性肯定在增加。...使用ChatGPT创建恶意软件确实存在技术缺陷。这款聊天机器人只有2021年的数据。虽然它为创建恶意软件组件提供了快捷方式,但人工智能生成的组件很容易识别。...安全工具可以对它们的模式进行指纹识别——如果ChatGPT数据没有持续更新的话,这一点就更加明显了。想要从ChatGPT获取恶意软件吗ChatGPT的公共接口始终拒绝处理恶意软件请求。...Q4 在哪里可以找到用于测试和研究的勒索软件样本?...通过使攻击者更难识别和利用特定的漏洞,MTD可以帮助防止高级AI生成的恶意软件成功危及终端。

1.6K20
  • 对抗样本原理分析

    本文以全连接神经网络为例来介绍对抗样本对人工智能模型作用的本质。...在图像分类、语音识别等模式识别任务中,机器学习的准确率甚至超越了人类。 人工智能技术具有改变人类命运的巨大潜能,但同样存在巨大的安全风险。...随后越来越多的研究发现,除了DNN模型之外,对抗样本同样能成功地攻击强化学习模型、循环神经网络(RNN)模型等不同的机器学习模型,以及语音识别、图像识别、文本处理、恶意软件检测等不同的深度学习应用系统。...本文以全连接神经网络为例来介绍对抗样本对人工智能模型作用的本质。 二、对抗样本简介 神经网络是目前人工智能系统中应用最广泛的一种模型,是一种典型的监督学习模型。...3双半月数据集的二分类问题 前面通过等高线分布图说明了对抗样本的作用机理。下面针对更加复杂的数据集来进一步展示。本节对双半月形数据集进行二分类。数据集和神经网络的等高线图分别如图6和图7所示。 ?

    1.4K10

    人工智能网络安全?请再认真点!

    一直没找到人工智能是怎么跟恶意加密流量对抗的。直到看到最后一段。终于看到“人工智能”这四个字了! ? 图5 人工智能与恶意加密流量的对抗 看过这段文字之后,终于明白了标题二所要表述的内容。...图6 人工智能可以与恶意加密流量对抗 这是一段即没有量化,又没有逻辑的废话。“人工智能算法赋予机器以专家的智慧”这是要换头吗?...并且模型的拟合度极高,6万多样本仅1次就能达到95%以上的正确率。这样的模型可以用于网络中的加密流量识别。我只能惊叹一下,加密流量的特征好明显啊,用个屁的人工智能。 下面的模型更是雷,如图12所示。...训练所需次数少,可以推断数据的维度非常低,数据样本非常少。 少量的样本数据,低维的特征提取,最终只能出来个玩具模型。 准确率基于的是已提供样本识别率,并非现网流量识别率,这个在文中无从衡量。...这样就敢说实现xxx种协议的识别,准确率达到99%。确实有点不合实际。 不服来辨…… 文章到最后也没有对检测引擎的产品给出具体的量化指标,比如:训练样本为多少条,都有哪些类型,各多少条。

    1K10

    五十三.DataCon竞赛 (2)2022年DataCon涉网分析之恶意样本IOC自动化提取详解

    题目提供了967个Mirai二进制样本,其架构分布如下: 针对以上样本,具体要求如下: 自动识别出Mirai家族样本,非Mirai家族样本不做提取 单个Mirai样本的平均提取时间不超过20秒 提取Mirai...(1)恶意代码攻击溯源及恶意样本分析 [系统安全] 三十二.恶意代码检测(2)常用技术万字详解及总结 [系统安全] 三十三.恶意代码检测(3)基于机器学习的恶意代码检测技术 [系统安全] 三十四.恶意代码检测...2)Powershell基础语法和注册表操作 [系统安全] 四十二.Powershell恶意代码检测系列 (3)PowerSploit脚本渗透详解 [系统安全] 四十三.Powershell恶意代码检测系列...(2)基于API序列和深度学习的恶意家族分类实例详解 [系统安全] 五十二.DataCon竞赛 (1)2020年Coremail钓鱼邮件识别及分类详解 [系统安全] 五十三.DataCon竞赛 (2)...2022年DataCon涉网分析之恶意样本IOC自动化提取详解

    73251

    九年双11让中国快递业世界领先,下一个九年会发生什么?

    每年双11我都会参与剁手,前几年来自外省的包裹要等一周甚至两周才收到,但今年双11我买的东西尽管到货没有平日快,却也在两三天内陆陆续续到达了。...百度外卖、达达等快递服务,成为中国街头的一道风景线;共享快递的出现,让许多人可以兼职成为快递员也可以让不同公司可以调配社会闲散运力;电商行业的快递保险则直接催生了众安保险这家上市公司;便于用户延时取件的智能快递箱也成为中国本土创新的样本...可以说,今天中国快递行业的服务能力已是九年前不可同日而语,快递运力、速度、效率和成本都做到了全球领先,什么都可以送、哪里都可以去,成为中国经济发展中与互联网、电商并列的一道奇迹,能够支持交易额大幅攀升的双...第二,物流行业进入智能时代。 人工智能、物联网和机器人等新技术正在改变各行各业,物流也在智能化。...;再比如顺丰利用图像识别技术来识别面单,提高录入效率;除了大数据和AI技术外,今年双11期间不少物流公司在仓库引入了机器人和物联网技术,智能分拣,提高效率降低分拣员的劳动强度。

    5.7K60

    刺向巴勒斯坦的致命毒针——双尾蝎 APT 组织的攻击活动分析与总结

    个样本是带有恶意宏的诱饵文档 ?...2019.12——2020.2双尾蝎APT组织针对巴勒斯坦所投放可执行文件样本的样本类型占比图-pic3 在这14个Windows恶意样本中,其诱饵文档的题材,政治类的样本数量有9个,教育类的样本数量有...那下面追影小组将以一个恶意样本进行详细分析,其他样本采取略写的形式向各位看官描述此次攻击活动。...打开jalsa.rar-pic80 其诱饵文件的内容与第十二届亚洲会议有关,其主体是无条件支持巴勒斯坦,可见可能是利用亚洲会议针对巴勒斯坦*的活动,属于政治类题材的诱饵样本 ?...编译时间戳的演进-pic117 (3).自拷贝方式的演进 双尾蝎APT组织在2017年到2019年的活动中,擅长使用copy命令将自身拷贝到%ProgramData%下.而可能由于copy指令的敏感或者已经被各大安全厂商识别

    2.9K11

    利用AI逃避规则,黑客的舞台又出神技!

    该研究团队实地演示了一项实验,他们将与APT28黑客组织关联的知名恶意软件STEELHOOK样本及其对应的YARA规则输入到一款强大的AI语言模型中,请求模型修改源代码以实现躲避检测,同时确保软件的基本恶意功能得以保留且生成的新代码逻辑无误...攻击者利用深度学习等技术,生成逼真的电子邮件、消息或网站,诱使用户泄露个人信息或下载恶意软件。人工智能已经开始使网络钓鱼攻击变得更加有效。...虽然许多网络钓鱼攻击会发送大量欺诈消息,希望少数攻击能够成功,但人工智能可以极大地提高网络犯罪分子发起鱼叉式网络钓鱼攻击的能力。...这些攻击利用人工智能筛选大量数据来制作定制的网络钓鱼消息,其成功率比标准的大规模网络钓鱼攻击高得多。识别AI网络钓鱼攻击识别AI网络钓鱼攻击是防范的第一步。...强化身份验证:在涉及敏感信息的操作中,启用双因素身份验证,增加账户安全等级。谨慎分享个人信息:不在不安全的网络环境中分享个人敏感信息,尤其是身份证号、银行账户信息等。

    22410

    刺向巴勒斯坦的致命毒针——双尾蝎 APT 组织的攻击活动分析与总结

    个样本是带有恶意宏的诱饵文档 2019.12——2020.2双尾蝎APT组织针对巴勒斯坦所投放样本的样本类型占比图-pic2 在这12个可执行文件样本中,有7个样本伪装成pdf文档文件,有1个样本伪装为...那下面追影小组将以一个恶意样本进行详细分析,其他样本采取略写的形式向各位看官描述此次攻击活动。...CreateFile函数将rar源数据写入jalsa.rar-pic79 通过ShellExecute函数将%Temp%\jalsa.rar打开 打开jalsa.rar-pic80 其诱饵文件的内容与第十二届亚洲会议有关...不过推测其大致功能应该与上文相同 恶意宏代码-pic113 三.组织关联与技术演进 在本次活动中,我们可以清晰的看到双尾蝎APT组织的攻击手段,同时Gcow安全团队追影小组也对其进行了一定的组织关联,...%下.而可能由于copy指令的敏感或者已经被各大安全厂商识别。

    2.7K10

    1万元的iPhone X太贵买不起?至少中国富人穷人都买得起

    排除连iPhone 8和iPhone X都不区分的“恶意差评”,我们来看看iPhone X最被差评的地方在哪里:全面屏、无线充电、面部识别、双摄像头光学防抖在安卓阵营都已有先行玩家,iPhone X不过是跟随...因为唱衰苹果的分析师没有站在用户角度思考问题,消费者买的不是创新,买的是体验,双摄像头不是苹果先做的,但做得更好。 同样,iPhone X的体验提升是十分显著的。...许多人看到它用了夏普、小米和三星已采纳的全面屏,却没留意到它干掉了HOME键,HOME键由iPhone引入手机行业再自己干掉,这个变化非常大;许多人认为FACE-ID是步虹膜识别或者人脸识别的后尘,然而却忽略了...FACE-ID有红外活体识别而不只是图像识别技术,通过红外传感器、点阵投影等多个传感器组合的“深度摄像头”带来快速、精准和安全的识别,以及Animoji等创新应用。...售价几十万的Vertu取得成功表明高端手机价格从来不是问题,不过智能手机使用体验由系统、应用生态等多个因素综合决定,Vertu日渐式微,不是人们嫌贵而是它不好用。

    3.3K70

    三十三.恶意代码检测(3)基于机器学习的恶意代码检测技术

    广泛应用于文本分类、语音识别中,同样适用于恶意代码检测。...(3)性能评估 下面是衡量机器学习模型的性能指标,首先是一幅混淆矩阵的图表,真实类别中1代表恶意样本,0代表非恶意样本,预测类别也包括1和0,然后结果分为: TP:本身是恶意样本,并且预测识别为恶意样本...FP:本身是恶意样本,然而预测识别为非恶意样本,这是误分类的情况 FN:本身是非恶意样本,然而预测识别为恶意样本,这是误分类的情况 TN:本身是非恶意样本,并且预测识别为非恶意样本 然后是Accuracy...其中,TPRate表示分类器识别出正样本数量占所有正样本数量的比值,FPRate表示负样本数量占所有负样本数量的比值。...(1)恶意代码攻击溯源及恶意样本分析 [系统安全] 三十二.恶意代码检测(2)常用技术万字详解及总结 [系统安全] 三十三.恶意代码检测(3)基于机器学习的恶意代码检测技术 参考文献: [1] Saxe

    2.2K20

    大安全时代,安全产品如何构建护城河?

    不仅如此,恶意程序也猖獗不断。...2017年1月-7月,360互联网安全中心累计监测到移动端用户感染恶意程序1.3人次,平均每天恶意程序感染量达到了61.5万人次;新增恶意程序样本483.9万个,平均每天截获新增手机恶意程序样本近2.3...一个简单的例子是,促销短信并不总是讨人厌,尤其是在双十一、双十二这样的大促前夕,用户反而期待收到感兴趣品牌的促销信息。...传统的依靠号码库实现的诈骗识别已不能满足日益复杂多变的诈骗形式和套路,尤其是以勒索软件为代表的恶意软件逐渐呈爆发态势,危害巨大。...一方面是人工智能技术驱动下的场景分析与识别,与用户进行实时的交互,并针对用户的使用行为进行机器训练,进而可以做到对诈骗等不安全事件更精准的识别;另一方面,则是在此基础上,结合态势感知对诈骗溯源分析,综合各方面数据

    1.3K30

    关于机器学习在网络安全中的五大误解

    有趣的是,在当时人们都认为该算法将很快导致“强”人工智能的出现。即,智能的思考能力、独立思考并可以解决那些默认编程程式外任务的人工智能。...可随后就是“弱”人工智能的时代,它可以解决一些创造性的任务,比如识别图片、预测天气、玩象棋等。...误解三 机器学习——做一次就够了 恶意软件检测和人脸识别在概念上的区别,脸永远是脸,在这方面永远也不会有什么改变。...因为通过客户端的恶意样本的平均数量要比反病毒实验室收集到的恶意样本数量小得多。客户端会因为没有收集到样本进行学习而丧失应对能力。...问题是大多数同家族的恶意软件都是由一个恶意程序修改而来的。例如 Trojan-Ransom.Win32.Shade 是一个拥有超过三万个恶意样本的家族。

    1.7K20

    关于机器学习在网络安全中的五大误解

    有趣的是,在当时人们都认为该算法将很快导致“强”人工智能的出现。即,智能的思考能力、独立思考并可以解决那些默认编程程式外任务的人工智能。...可随后就是“弱”人工智能的时代,它可以解决一些创造性的任务,比如识别图片、预测天气、玩象棋等。...误解三:机器学习——做一次就够了 恶意软件检测和人脸识别在概念上的区别,脸永远是脸,在这方面永远也不会有什么改变。...因为通过客户端的恶意样本的平均数量要比反病毒实验室收集到的恶意样本数量小得多。客户端会因为没有收集到样本进行学习而丧失应对能力。...问题是大多数同家族的恶意软件都是由一个恶意程序修改而来的。例如 Trojan-Ransom.Win32.Shade 是一个拥有超过三万个恶意样本的家族。

    1.6K50

    二十九.外部威胁防护和勒索病毒对抗(深信服老师)

    接下来我将开启新的安全系列,叫“系统安全”,也是免费的100篇文章,作者将更加深入的去研究恶意样本分析、逆向分析、内网渗透、网络攻防实战等,也将通过在线笔记和实践操作的形式分享与博友们学习,希望能与您一起进步...该样本不会分享给大家,分析工具会分享。...作者先感谢深信服的老师和B站UP主漏洞银行团队,这篇文章包括了大量高级可持续威胁的防御技术,既可运用于科学研究,又可用于实战,并且提供了丰富的思想,再次感谢他们,后续作者会结合实战技术深入理解这些方法,包括基于人工智能的检测和基于词法语法的样本分析...同时,从识别到响应也需要一定时间,比如样本提取、样本分析等。威胁清除方法包括:登录防火墙查看安全日志、判断威胁等级及严重性、定位疑似IP及电话询问用户、病毒扫描及定位威胁和事件。...2.端的保护 智能检测提供全面的终端保护,具体内容包括: 响应:文件修复、一键隔离风险、溯源分析 检测:病毒全局抑制机制、文件实时监控及主动扫描 防御:恶意程序诱捕及病毒防扩散、勒索及挖矿变种防护、常规及高危病毒防护

    2K40

    360用AI agent正面刚APT了!

    几乎就在同一时间,公司安全部某运营人员的屏幕前自动生成了一条红色紧急告警,告警名称赫然写着“检测到与APT-C-28恶意服务器进行通信”,这让他瞬时心跳加速! -这个告警是从哪儿来的?...这不仅令人疲于应对,还可能导致真正的威胁被忽视,尤其是识别极具因隐蔽性和复杂性的APT攻击,已成为安全行业面临的一大难题。...精准识别告警 在财务人员点开邮件并打开带毒附件的同时,360安全智能体就凭借独有的超越内核级探针矩阵识别出了可疑样本,随即计算、检索和关联,模拟安全专家进行类人化深度分析,将海量告警快速“去噪”,顺利筛选出这条紧急告警...用户可以一目了然知道问题出在哪里。...该攻击链显示攻击者使用了模版注入技术,投放带宏病毒的恶意文件,运行后释放恶意样本,将窃密模块注册为一个系统服务,收集系统敏感数据,并通过网络渗出数据。 攻击研判 悉数掌握了攻击过程,那么来者究竟何人?

    24910

    深度学习:能击败欧洲围棋冠军,还能防恶意软件

    Deep Instinct的学习方法将恶意软件样本分解为大量的小“碎片”,恶意软件从而可以进行映射,就像是基因组序列便是由成千上万更小的序列组合构成。...这些被“分解”的样本仍是二进制位字符串,用于训练神经网络进行系统地识别。在进行了数百万次计算之后,神经网络运行于一个GPU集群中,最终得出一个能够指向终点的静态神经网络结果。...Deep Instinct恶意软件识别率远超传统安全公司 Göttingen大学举行的对16000个恶意软件样本进行识别测试中,来自西门子CERT、Bit-Defender、McAfee、Trend(趋势科技...)、AVG、卡巴斯基、Sophos以及其他安全公司平均识别率为61%,而Deep Instinct对于恶意软件的识别率则高达98.86%。...一些恶意软件样本自主突变,而其功能并没有受到影响。PDF恶意软件的识别率是99.7%,可执行文件的检测率为99.2%。

    1.3K70

    01.AI双非研0如何从事AI安全研究

    博友提问:AI双非研0,很好奇怎么把安全应用到AI上,可以推荐些入门的东西吗?对这个方向很感兴趣,以及双非搞AI有前途吗? 作者回答:你好!...(区块链)、对抗样本等都会和AI结合,不论是否是双非、211、985还是企业,了解一定AI安全相关的知识是有必要的,比如Fuzzing、漏洞挖掘、恶意代码分析、代码解混淆、入侵检测等。...比如说系统安全的恶意代码分析、逆向工程都要掌握好,以及如何提取样本的CFG特征或API特征;再如漏洞扫描基本方法,angr、符号执行、污点分析、BP(业务漏洞)基本工具的用法,以及掌握基本挖漏洞的逻辑,...,并进行有效的语义提取和特征表征增强,更好地实现恶意性识别、家族分类或溯源,AI结合安全的研究大概流程就是这样(样本采集->预处理->特征提取->向量表征->模型构建->优化评估)。...如果你是进入企业,建议结合实际业务看看AI工具如何提升你的现有工作,比如入侵检测的规则,恶意代码特征,Fuzzing漏洞挖掘等。 最后,不论是双非还是其它,都要把基础知识学好,技多不压身。

    18211

    行业安全解决方案|腾讯游戏安全一站式防护,助力对抗外挂和DDoS攻击

    痛点四:内容安全在游戏互动功能中,玩家恶意发布的引流广告、暴力、涉黄等信息可能导致游戏被整改或下架,给游戏厂商带来巨大的监管合规压力。...核查全流程解决打金工作室问题;3.多场景多版本支持:全方位覆盖MMORPG、SLG、LBS、ACT等各品类,支持端游、手游、页游,覆盖脚本、云手机、同步器、虚拟机、多开等各类作弊方式;4.高准确率:基于海量样本库和深度图像识别模型的检测方案...防护场景二DDoS防护保障业务平稳运行腾讯安全可为厂商提供DDoS高防包、DDoS高防IP等多种解决方案,以应对DDoS攻击问题,通过充足、优质的DDoS防护资源,结合持续进化的“自研+AI智能识别”清洗算法...该方案可为企业带来的价值:1.集网络安全、应用安全、主机安全层面于一体;2.云防火墙:开启方便,无需部署;稳定可靠,平滑扩展;统一管控,高效易用;等保合规,日志审计;3.Web应用防火墙:具备多种接入防护方式;AI+规则双引擎防护...该方案可为企业带来的价值:1.强大功能:支持自定义词库、样本库、识别规则,对内容进行定向过滤;2.丰富情报:腾讯多年响应甲方监管要求,积累了大量内容安全审核经验;3.精准数据:与腾讯众多自由业务共享违规词库

    3.9K20

    如何避免AI“指鹿为马” | 京东AI“读心术”破解“对抗样本攻击”难题

    上述由恶意的攻击者故意设计生成的以欺骗人工智能系统的样本被称为对抗样本(adversarial samples)。...同样一只猫,上图仅能解释出一些背景,而下图则基本可以识别猫的全貌。 此外,安全专家还悄悄告诉小编,目前国际上还没有一个真正的系统可以对安全驱动的AI系统作出合理解释,我们这套技术可以说是遥遥领先。...1、漏洞研究 任何系统都有漏洞,一直以来,我们的安全策略都是“哪有漏洞补哪里”。 但是,如何确保我们可以在黑产之前发现漏洞呢?...据了解,很多安全研究员都十分钟情这套系统,他们表示,看到人工智能的分析深受启发,帮助自己拓宽了思路。 2、黑产标记 通过AI技术来标记“恶意账号”,是京东安全保障用户信息安全的重要一环。...每到大型购物节,很多黑产为了降低成本,都会注册很多恶意账号,然后用机器集中操作,实现刷票、薅羊毛等不法行为。

    89230
    领券