导读:听说最近《长安十二时辰》比较火,于是趁着一个周末赶紧补一补剧。相信很多人都对其中的"大案牍术"比较感兴趣。
听说最近《长安十二时辰》比较火,于是趁着一个周末赶紧补一补剧。相信很多人都对其中的"大案牍术"比较感兴趣,靖安司说"大案牍术"选中了张小敬。
国家邮政局发布的数据显示,2015年4月底,快递业务量完成15亿件,同比增长50.9%。目前,快递业务量增速已连续50个月超过50%,尤其是网购旺季(双十一、双十二等),我国快递包裹在当月的总量在世界范围内没有任何国家可以相比。 电子商务的兴盛有效带动快递行业的高速发展,反之,快递行业的提升也为电子商务的增长提供配套支撑。 不过,快递业在迅猛发展的同时,也让行业“亚健康”的现状越发凸显。业内人士表示,虽然国内快递行业仍在高速增长,但目前运营“压力山大”,比如人员、车辆、场地等问题。 国家统计局网站公布的快
最近读了马伯庸老师的小说《长安十二时辰》(也有改为《长安二十四时辰》的网剧,之所以改成二十四时辰,我觉得也是非常的不认可原著里面的时间观念吧? 别说是十二时辰,即便是二十四时辰,我还是认为也不可能这这么短的时间内构筑这么多事情),这是一部以唐朝为背景,讲述短短二十四小时内发生在长安城内,攻防双方围绕 入侵 & 防御、检查 & 规避、攻击 & 应对 等系列主题展开的一场场惊心动魄故事的小说。这不仅让我想到了最近一直在研究的SIEM/SOC的建设,特此有感,写下本文
物联网系统中,需要实时处理的数据可通过队列送入流处理引擎;不需要实时处理的数据,用于离线分析或数据挖掘,需要先存储起来。物联网系统的数据存储的方式很多,要根据实际场景来选择。
微博广告基础架构团队负责人、技术专家,商业大数据平台及智能监控平台发起人,目前负责广告核心引擎基础架构、Hubble智能监控系统、商业基础数据平台(D+)等基础设施建设。关注计算广告、大数据、人工智能、高可用系统架构设计、区块链等方向。在加入微博之前,曾就职于百度负责大数据平台建设,曾担任趣点科技联合创始人兼CTO等职位。毕业于西北工业大学,曾在国内外知名期刊发表多篇学术论文,拥有9项发明专利。
豆瓣评分高达8.6的国产剧《长安十二时辰》,终于在今晚迎来大结局——幕后BOSS究竟是谁?张小敬和李必命运如何,都一一揭开谜底。该剧改编自以“脑洞大”著称的作家马伯庸同名小说,悬疑反转的快节奏剧情,美轮美奂的长安城场景,唐朝韵味的妆法服装,刻画细致的人物角色,情节、灯光、道具、演技均比肩电影制作。
时序数据库(Time Series Database)是用于存储和管理时间序列数据的专业化数据库。时序数据库特别适用于物联网设备监控和互联网业务监控场景。
本项目由涛思数据投递并参与“数据猿年度金猿策划活动——2022大数据产业创新技术突破榜单及奖项”评选。
2021年11月22日,南方电网数字电网研究院有限公司发布《2021年南网数研院平台安全分公司数据中心升级完善二期(电能量平台融合改造、分节点云化等)项目存储计算组件和时序数据库采购公示公告》,采购方式单一来源。 项目概况:根据网公司云化数据中心主分节点建设安排,数据中心升级完善二期(电能量平台融合改造、分节点云化等)在原有数据中心升级完善一期项目及二期(数据湖、云化及服务组件层)建设的基础上,完善了数据中心数据处理及服务能力。本项目对数据中心存储计算组件进行扩容,新增913套存储计算组件,预算3652万元
2017年时序数据库忽然火了起来。开年2月Facebook开源了beringei时序数据库;到了4月基于PostgreSQL打造的时序数据库TimeScaleDB也开源了,而早在2016年7月,百度云在其天工物联网平台上发布了国内首个多租户的分布式时序数据库产品TSDB,成为支持其发展制造,交通,能源,智慧城市等产业领域的核心产品,同时也成为百度战略发展产业物联网的标志性事件。时序数据库作为物联网方向一个非常重要的服务,业界的频频发声,正说明各家企业已经迫不及待的拥抱物联网时代的到来。 本文会从时序数据
之前写了一个C# 调用PowerShell方法, 那么怎么反过来操作呢,也就是怎么样用C#写一个powershell命令呢? 现在就用C#写一个超级简单的Module和Cmdlet 1. 在VS中创建
2月19日,,就 Apache IoTDB 的核心技术及典型应用场景进行了直播分享探讨,分别是 Apache IoTDB:基于开放数据文件格式的时序数据库、IoTDB 在阿里云智能制造业务中的实践、智能运维场景中的时序数据库选型与挑战、时序数据库IoTDB在360的落地实践这4个主题。
12 月 3 日、4日,2022 Apache IoTDB 物联网生态大会在线上圆满落幕。大会上发布 Apache IoTDB 的分布式 1.0 版本,并分享 Apache IoTDB 实现的数据管理技术与物联网场景实践案例,深入探讨了 Apache IoTDB 与物联网企业如何共建活跃生态,企业如何与开源社区紧密配合,实现共赢。
今天分享一篇时序数据库Survey,《Time Series Management Systems: A Survey》,2017 年 TKDE 的。作者 Søren Kejser Jensen, Torben Bach Pedersen, Senior Member, IEEE, Christian Thomsen,丹麦奥尔堡大学。他们在 2018 年有一篇时序数据库的论文: ModelarDB:Modular + Model。
一、IoTDB的研发背景 (一)IoTDB的发展历程 IoTDB是由清华大学大数据软件团队于2016年开始开发的一个物联网数据库项目,旨在满足大规模物联网和工业物联网应用的数据、存储和分析需求。2018年11月,IoTDB进入了Apache孵化器,开始了它的开源之旅。在孵化期间,IoTDB吸引了来自全球的贡献者和用户,并与其他Apache项目如Spark和Hadoop进行了无缝集成。2020年9月,IoTDB正式成为Apache顶级项目,并获2020年北京市科技进步一等奖。2021年10月,IoTDB受邀参
原创文字,IoTDB 社区可进行使用与传播基于IoTDB 平台的学习和研究_应用_芯动大师_InfoQ写作社区
https://blog.csdn.net/ransom0512/article/details/78114167
最近,悄悄上线的《长安十二时辰》在朋友圈被吹爆了:年度最佳古装剧、服道化精致、电影质感、良心剧等赞美的声音不绝于耳。该剧首播时在豆瓣拿到了8.8的高分,但是,随着剧情的深入,豆瓣的评分却慢慢降低到现在的8.6分,一部分人提出了不少的质疑,甚至有人说这是一部用战术上的勤奋(服道化)来掩盖战略上的懒惰(叙事和节奏)的剧。
在大型微服务架构中,服务监控和实时分析需要大量的时序数据。存储这些时序数据最高效的方案就是使用时序数据库 (TSDB)。设计时序数据库的重要挑战之一便是在效率、扩展性和可靠性中找到平衡。这篇论文介绍的是 Facebook 内部孵化的内存时序数据库,Gorilla。Facebook 团队发现:
本期Informatica微电台邀请到了Informatica中国区销售总经理李晨为我们揭示《长安十二时辰》的“硬核黑科技”,解密“古代大数据中心”靖安司——
Hive和HBase是两个在大数据领域中被广泛使用的开源项目,它们各自适用于不同的场景,但也可以在某些情况下结合使用。以下是Hive和HBase在不同场景下的应用示例:
互联网服务可以将用户的网络延迟数据、业务服务指标数据、日志数据等写进CTSDB数据库。然后由时序数据库直接生成报表以供技术产品做分析,尽早的发现、解决问题。
数据库的模型包含关系型、key-value 型、Document 型等很多种,那么为什么新型的时序数据库成为监控数据存储的新宠呢? 下面就会从
时间序列是在特定时间点的一系列测量。例如温度、股票价格、汽车速度、流速、CPU 使用率等,通常在某个时间点观察,然后也在某个时间点存储。例如测量每天早上 8 点的温度,并把将其放在一些测量日志之中,这样每个数据点会对应特定的日期。将数据与时间联系在一起,例如将日期作为横轴,将数据点绘制成为曲线会展现出其他信息,例如温度变化的趋势。
回想起来,第一次对文件格式有直接的认识,还是在很久很久以前那个MP3随身听流行的年代。那时候,一个MP3随身听的容量通常是128MB;一首.mp3格式的音乐大约为4MB。我是个杰伦粉,当时杰伦发行了大约60首歌曲,而我最大的愿望是在MP3随身听里存下所有杰伦的歌曲。很明显,128MB的随时听最多也只能存30首歌曲,苦恼的博主在一番探索之后,发现手里的MP3播放器不仅能播放.mp3的音乐,还能播放.wma格式的歌曲;而且,一首wma格式的音乐大小只有2MB!有了这个办法,我终于不用每周更换一次MP3里的歌曲了...
时序数据库,全称为时间序列数据库,主要用于处理带时间标签(按照时间的顺序变化,即时间序列化)的数据。这些数据主要由电力行业、化工行业、气象行业、地理信息等各类型实时监测、检查与分析设备所采集、产生。这些工业数据的典型特点是产生频率快(每一个监测点一秒钟内可产生多条数据)、严重依赖于采集时间(每一条数据均要求对应唯一的时间)、测点多信息量大(常规的实时监测系统均有成千上万的监测点,监测点每秒钟都产生数据,每天产生几十GB的数据量)。
复杂而又变化多端的中高频量价因子的研究和开发已经成为众多量化私募最重要的工作之一。DolphinDB作为一个一站式的时序数据存储、分析和实时计算平台,可以帮助金工和IT人员将复杂的因子快速转化成能在研发或生产环境中高效运行的计算机脚本。
为什么用关系型数据库?最常见的理由是别人在用,所以我也得用,但是这个并不是理由,而是借口。
先来介绍什么是时序数据。时序数据是基于时间的一系列的数据。在有时间的坐标中将这些数据点连成线,往过去看可以做成多纬度报表,揭示其趋势性、规律性、异常性;往未来看可以做大数据分析,机器学习,实现预测和预警。
博客断更了好久了,今天提笔分享一下将IoTDB真正应用到生产环境当中的故事。如果你也正在研究或对相关技术感兴趣,欢迎一起讨论学习,联系方式见文章末尾。
智慧健康养老服务管理系统是北京怡养科技有限公司的建设项目,是内嵌智能家居、健康管理、综合评估、服务管理、呼叫中心、决策支持等模块在内的专业养老服务管理系统。基于老年人健康数据,以老年人综合评估管理和老年人风险预测分析模型与专家系统为技术支持,整合养老服务资源,为老年人提供精细化、专业化的照护管理计划和个人健康档案管理。
在上篇文章《时序数据库体系技术 – 时序数据存储模型设计》中笔者分别介绍了多种时序数据库在存储模型设计上的一些考虑,其中OpenTSDB基于HBase对维度值进行了全局字典编码优化,Druid采用列式存储并实现了Bitmap索引以及局部字典编码优化,InfluxDB和Beringei都将时间线挑了出来,大大降低了Tag的冗余。在这几种时序数据库中,InfluxDB无疑显的更加专业。接下来笔者将会针对InfluxDB的基本概念、内核实现等进行深入的分析。本篇文章先行介绍一些相关的基本概念。 InfluxDB
腾讯云市场,定位是“企业的云上集市”。 这个双十二,腾讯云市场联合数十家精选服务商,带你共享一场云上的购物狂欢。 活动一:精选开发者服务 为了回馈长期以来个人开发者对腾讯云市场的支持,云市场联合优质服务商推出数款开发者服务精选单品。 如虚拟主机云市场专享价,20元/月,199/年。薅羊毛价仅限云市场双十二会场,戳图片直达: 更有域名建站组合购,优质后缀,无法拒绝的低价: 活动二:送最高500元京东卡! 引流营销小程序,分销商城,企业400电话,微信云报餐系统,买就送大额京东卡
近几年IoT、IIoT、AIoT和智慧城市快速发展,时序/时空数据库成为数据架构技术栈的标配。根据国际知名网站DB-Engines数据,时序数据库在过去24个月内排名高居榜首,且远高于其他类型的数据库,可见业内对时序数据库的需求迫切。
我们知道zabbix在监控界占有不可撼动的地位,功能强大。但是对容器监控显得力不从心。为解决监控容器的问题,引入了prometheus技术。
InfluxDB是一个开源的、高性能的时序型数据库,在时序型数据库DB-Engines Ranking上排名第一。
TDengine 是一款开源、云原生的时序数据库,专为物联网、工业互联网、金融、IT 运维监控等场景设计并优化。它能让大量设备、数据采集器每天产生的高达 TB 甚至 PB 级的数据得到高效实时的处理,对业务的运行状态进行实时的监测、预警。
下文整理自清华大学大数据能力提升项目能力提升模块课程“Innovation & Entrepreneurship for Digital Economy”(数字经济创新创业课程)的精彩内容。 主讲嘉宾: Kris Singh: CEO at SRII, Palo Alto, California Visiting Professor of Tsinghua University Yingbo Liu, Associate Research Fellow of School of Software, Tsin
万物互联时代,工业物联网产生的数据量比传统的信息化要多数千倍甚至数万倍,并且是实时采集、高频度、高密度,动态数据模型随时可变。传统数据库在对这些数据进行存储、查询、分析等处理操作时捉襟见肘,迫切需要一种专门针对时序数据来做优化的数据库系统,即时间序列数据库。
【摘要】Gartner指出赋能边缘是2020年十大战略技术趋势之一,5G加速IoT领域的发展,物联网设备数据的收集,存储和计算需求与日俱增。Apache IoTDB是物联网时序数据收集、存储、管理与分析为一体的的软件系统。Apache IoTDB作为Apache的2020新晋顶级项目,以其出色的表现得到了Apache的认可!目前Apache IoTDB与Hadoop、Spark和Flink等进行了深度集成,可以完全胜任工业物联网领域的海量数据存储、高速数据读取和复杂数据分析的需求。本次分享将为大家对Apache IoTDB的前世今生和核心的技术进行详细介绍.
今天带来的是活动营销系统下的第一个独立子系统通用抽奖工具的介绍,本篇文章主要分为如下4部分:
点击关注公众号,Java干货及时送达 来源:www.cnblogs.com/xiaoyuxixi/p/12235979.html 新公司要上监控,面试提到了 Prometheus 是公司需要的监控解决方案,我当然是选择跟风了。 之前主要做的是 Zabbix,既然公司需要 Prometheus,那没办法,只能好好对比一番,了解下,毕竟技多不压身。 但稍稍深入一点,我就体会到了 Prometheus 的优点,总结一下这两种监控方式。 两种监控工具的历史简介 Prometheus Kubernetes 自从
OpenTSDB(Open time series data base),开发时间序列数据库。DB这个词很有误导性,其实并不是一个db,单独一个OpenTSDB无法存储任何数据,它只是一层数据读写的服务,更准确的说它只是建立在Hbase上的一层数据读写服务。行业内各种db都很多了,为什么还会出现它?它到底有什么好?它做了什么?别着急,我们来一一分析下。 其实OpenTSDB不是一个通用的数据存储服务,看名字就知道,它主要针对于时序数据。什么是时序数据,股票的变化趋势、温度的变化趋势、系统某个指标的变化趋势……其实都是时序数据,就是每个时间点上纪录一条数据。 关于数据的存储,我们最熟悉的就是mysql了,但是想想看,每5分钟存储一个点,一天288个点,一年就10万+,这还是单个维度,往往在实际应用中维度会非常多,比如股票交易所,成千上万支股票,每天所有股票数据就可能超过百万条,如果还得支持历史数据查询,mysql是远远扛不住的,必然要考虑分布式存储,最好的选择就是Hbase了,事实上业内基本上也是这么做的。(我对其他分布式存储不了解,就不对比了)。 了解Hbase的人都知道,它可以通过加机器的水平扩展迅速增加读写能力,非常适合存储海量的数据,但是它并不是关系数据库,无法进行类似mysql那种select、join等操作。 取而代之的只有非常简单的Get和Scan两种数据查询方式。这里不讨论Hbase的相关细节,总之,你可以通过Get获取到hbase里的一行数据,通过Scan来查询其中RowKey在某个范围里的一批数据。如此简单的查询方式虽然让hbase变得简单易用, 但也限制了它的使用场景。针对时序数据,只有get和scan远远满足不了你的需求。 这个时候OpenTSDB就应运而生。 首先它做了数据存储的优化,可以大幅度提升数据查询的效率和减少存储空间的使用。其次它基于hbase做了常用时序数据查询的API,比如数据的聚合、过滤等。另外它也针对数据热度倾斜做了优化。接下来挨个说下它分别是怎么做的。
这只是市场上主流数据库的一小部分,实际上还有很多其他数据库类型和实现。选择适合项目需求的数据库类型通常取决于数据模型、性能需求、可扩展性等因素。
导读:这个夏天,笔者被一部国产剧给吸引住了,一口气连追了20多集,就是最近火爆全网、口碑炸裂的《长安十二时辰》。
随着移动互联网、物联网、云计算等信息技术蓬勃发展,数据量呈爆炸式增长。如今我们可以轻易得从海量数据里找到想要的信息,其中离不开搜索引擎技术的帮助。特别是其中的索引、检索和排序机制,我们无需深入了解背后复杂的信息检索原理,即可实现基本的全文检索功能。数据量达到十亿,百亿规模仍然可以秒级返回检索结果。对于系统容灾、数据安全性、可扩展性、可维护性等我们关注的实际问题,在开源搜索引擎领域排名第一的Elasticsearch里均能得到有效解决。
还不更新❓❓❓来啦~ Skr Shop年底第二弹《营销体系》第二篇《通用抽奖工具之需求分析》~
近日,东方国信时序数据库CirroData-TimeS(基于Apache IoTDB)完成了与大连图扑TopLink组态软件的适配。在某核电站数据展示项目中,数据经过Toplink的解析,进入CirroData-TimeS时序数据库进行存储和计算。通过搭建场景和动画驱动,对压水堆核电站发电的工作原理进行了数据可视化展示。实现了CirroData-TimeS在工业数据可视化领域的生态建设,为工业物联网提供了全新的解决方案。
领取专属 10元无门槛券
手把手带您无忧上云