首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

真人语音合成平台哪家好 真人语音合成应用场景有哪些

很多人在无聊的时候,就会选择去听小说语音播报等等,这些语音播报大多都是技术合成的,因为真人的语音播报费用非常高,而语音合成成本并不算高,下面就将为大家介绍真人语音合成平台。...真人语音合成平台哪家好 随着网络技术的不断发展,网络上出现了很多的真人语音合成平台。但有些真人语音合成平台并不正规,合成的语音并没有质量保证。云服务器就是一个好的真人语音合成平台,产品优势非常的多。...更重要的是,云服务器语音合成平台还能够进行个性化的定制。 真人语音合成应用场景有哪些 真人语音合成的应用场景非常广泛,主要可以用来进行机器人发声。...现在很多的场合都是能够看见机器人的,他们能够和人进行自由的交流,而交流的语言需要使用语音合成。真人语音合成还可以应用在有声读物制作,尤其是在有声小说中,可以提升用户的体验。...语音合成应用越来越多,真人语音合成平台哪家好?正规的语音合成平台会比较好,因为在收费上比较合理,而且制作出来的语音合成和真人没有什么区别,如果大家想要进行真人语音合成,云服务器就是一个非常不错的选择。

7.6K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Spark机器学习实战 (十二) - 推荐系统实战

    1 推荐系统简介 1.1 什么是推荐系统 1.2 推荐系统的作用 1.2.1 帮助顾客快速定位需求,节省时间 1.2.2 大幅度提高销售量 1.3 推荐系统的技术思想 1.3.1 推荐系统是一种机器学习的工程应用...用户ID 所推电影 Spark机器学习实践系列 基于Spark的机器学习实践 (一) - 初识机器学习 基于Spark的机器学习实践 (二) - 初识MLlib 基于Spark的机器学习实践...(三) - 实战环境搭建 基于Spark的机器学习实践 (四) - 数据可视化 基于Spark的机器学习实践 (六) - 基础统计模块 基于Spark的机器学习实践 (七) - 回归算法 基于Spark...的机器学习实践 (八) - 分类算法 基于Spark的机器学习实践 (九) - 聚类算法 基于Spark的机器学习实践 (十) - 降维算法 基于Spark的机器学习实践(十一) - 文本情感分类项目实战...基于Spark的机器学习实践 (十二) - 推荐系统实战 X 交流学习 Java交流群 博客 知乎 Github

    1.2K30

    Spark机器学习实战 (十二) - 推荐系统实战

    什么是推荐系统 [1240] [1240] [1240] 1.2 推荐系统的作用 1.2.1 帮助顾客快速定位需求,节省时间 1.2.2 大幅度提高销售量 1.3 推荐系统的技术思想 1.3.1 推荐系统是一种机器学习的工程应用...用户ID [1240] 所推电影 [1240] Spark机器学习实践系列 基于Spark的机器学习实践 (一) - 初识机器学习 基于Spark的机器学习实践 (二) - 初识MLlib 基于Spark...的机器学习实践 (三) - 实战环境搭建 基于Spark的机器学习实践 (四) - 数据可视化 基于Spark的机器学习实践 (六) - 基础统计模块 基于Spark的机器学习实践 (七) - 回归算法...基于Spark的机器学习实践 (八) - 分类算法 基于Spark的机器学习实践 (九) - 聚类算法 基于Spark的机器学习实践 (十) - 降维算法 基于Spark的机器学习实践(十一)...- 文本情感分类项目实战 基于Spark的机器学习实践 (十二) - 推荐系统实战 X 交流学习 [1240] Java交流群 博客 知乎 Github

    3K40

    机器学习虽好,也要看什么场合!

    这不需要建立模型,也不需要什么高深的机器学习理论。 1 什么时候要用机器学习? 那在什么情况下我们需要使用机器学习呢? 当然是输入训练集中没有的数据啦!...机器学习是不是能帮我们搞定这种情况? 没错儿! 但是话说回来,如果这个输入和输出之间压根儿没什么联系的话,机器学习也爱莫能助。...记住,机器学习是用来学习数据中隐藏的数据模式的。 重复已有的答案算什么本事?机器学习能对没见过的新情况进行解决! 程序猿可能会问,事儿都让你干了,那我的任务是啥?...机器学习不是鹦鹉学舌,死记硬背已有数据集是没用的。机器学习的魅力和强大之处在于,它能够从已有数据中概括和抽象出数据背后的规则,从而普适地应用于新的场景。...(好期待呀,因为我还没有编出来呢) 我知道肯定有不少人会使用传统的统计分析学方法来给出的答案,但是你开心就好~黑猫白猫,抓到老鼠的就是好猫~ 想要了解统计分析方法和机器学习的区别请戳这里:http://

    40220

    Google机器学习教程心得(三) 好的feature

    什么造就好的Feature 这里举了一个对两种狗狗做分类的问题介绍好的Feature应有的特性 简化问题 好的feature能有力地说明两个类别的不同 单个feature往往不完美,所以需要多个...如果不同的label中,这个feature的值分布越均匀,则这个feature的分类作用越弱 在同一种眼睛颜色中,不同狗的数量差不多,说明眼的颜色的分类作用弱,这样的feature会降低分类器的准确性 好的...应该是相互独立的,能够提供更多有效信息, 每个feature在分类器中都占一定的重要性,而如果feature间不独立,重要性的比重也会与原本的计划有偏差 feature应当预处理地尽可能与结果直接相关 有好的...feature还不够,还要有好的feature之间的好的组合 总结 好的feature应该是这样的: Informative Independent Simple 代码 Good-Feature:构造数据集与绘制柱状图

    92170

    第十二章 机器学习系统设计

    该系列文章为,观看“吴恩达机器学习”系列视频的学习笔记。虽然每个视频都很简单,但不得不说每一句都非常的简洁扼要,浅显易懂。非常适合我这样的小白入门。...当我们不是用机器学习算法时,直接将预测值的返回设定为0,此时程序在训练集上的预测正确率为95%,甚至比我们使用机器学习算法的正确率还高。。。 ?...更具体的说,比如我有不同的学习算法,或者相同的学习算法,不同的临界值,我们该如何决定哪一个算法是好的了?...与此相反的是,如果我们有一个评估度量值,一个数字,能够告诉我们到底是算法1好还是算法2好。...12.5 机器学习数据 ? 使用不同的学习算法的效果,与将这些效果使用到不同训练数据集上,两者的比较。

    56220

    机器学习边缘产品评测:问推理性能哪家强?

    特别是,我们将重点关注边缘机器学习的性能结果。 什么是边缘计算? 边缘计算包括将数据处理任务委派给网络边缘上尽可能靠近数据源的设备。...这使得能够以非常高的速度进行实时数据处理,这对于具有机器学习功能的复杂物联网解决方案来说是必须的。最重要的是,它减轻了网络限制,降低了能耗,提高了安全性,并改善了数据保密性。...在这种新范式下,针对边缘机器学习进行了优化的专用硬件和软件库的组合产生了可大规模部署的尖端应用程序和产品。 构建这些惊人的应用程序所面临的最大挑战是音频,视频和图像处理任务。...事实证明,深度学习技术在克服这些困难方面非常成功。 在边缘实现深度学习 例如,让我们以自动驾驶汽车为例。在这里,您需要快速而一致地分析传入的数据,以破译周围的环境并在几毫秒内采取行动。...结论 这里提出的研究基于我们对为深度学习算法设计的最新边缘计算设备的探索。 我们发现Jetson Nano和Coral Dev开发板在推理时间方面表现很好。

    1.1K20

    双非机器学习秋招坎坷路

    写在前面的话:部分牛友在评论区喷 强调机器学习、算法要求没那么高,那么我说一句,你们凭心而论,如果不是手里有那么些个竞赛大奖或者acm等算法大奖,你们的简历怎么能说好,况且算法大奖这些东西毕竟只存在于少数人之中...,不可能人手必备(本来就是写给双非学弟学妹的建议 大佬们勿喷)。...PS:秋招基本上告一段落咯(收获了一些还不错的offer 不折腾了),楼主是真正意义上的渣硕,一个林业学校的双非,写这篇帖子小记下秋招经历也只是为了跟我同样的小伙伴(同是双非或者学校更差)提供一些思路,...要做到这个 请务必刷算法题,尽量不要找机器学习、算法相关的工作 除非你有大的项目作为支撑,因为这些大公司这些岗位基本要求C9硕士!...十二、校招恒生(过笔试一面完等通知) 个人依次来,不知道以啥标准择人: 1、自我介绍 2、谈项目 3、提问题(自己问面试官) PS:至今没通知,估计是gg了!

    2.3K70

    Facebook 的应用机器学习平台

    Facebook产品或服务使用的机器学习算法。 C.Facebook内部“机器学习作为服务” Facebook有几个内部平台和工具包,目的是简化在Facebook产品中利用机器学习的任务。...Facebook大多数的机器学习训练通过FBLearner平台完成。这些工具和平台协同工作的目的是提高机器学习工程师的生产力,并帮助他们专注于算法的创新。 ? Facebook机器学习流和架构。...Caffe2是Facebook的内部训练和部署大规模机器学习模型的框架。Caffe2关注产品要求的几个关键的特征:性能、跨平台支持,以及基本的机器学习算法。...一个是单插槽CPU服务器(1xCPU),包含4个Monolake服务器子卡,另一个是双插槽CPU服务器(2xCPU)。...对于机器学习应用程序,这提供了一个充分利用分布式训练机制的机会,这些机制可以扩展到大量的异质资源(例如不同的CPU和GPU平台,具有不同的RAM分配)。

    2.3K50

    机器学习平台的演进史

    第二代机器学习平台侧重于模型:重点是快速创建和跟踪实验,以及部署、监控和理解模型。 第三代机器学习平台侧重于数据:重点是特征和标签的构建以及机器学习工作流的自动化。...这三类机器学习平台并没有绝对的优劣,对于企业而言,也不一定一开始就要选择第三代机器学习平台,凡事都要有一个演进的过程。...如果说草创阶段,大可以选择第一代机器学习平台,先让机器学习应用于业务,产生业务价值;然后再引入第二代机器学习平台让机器学习模型能快速且自动化的应用于业务。...第二代机器学习平台:基于模型的解决方案 正是因为第一代机器学习平台有着种种缺陷,于是有人开始讨论“数据科学工作流程”或机器学习开发生命周期 (MLDLC)。...第三代机器学习平台是因为 AI 算法已经足够成熟了,只需要像平台提供一些训练数据就可以让平台完成一次机器学习模型的训练和部署到生产环境。

    2.4K30

    打破“维度的诅咒”,机器学习降维大法好

    水木番 编译整理 量子位 报道 | 公众号 QbitAI 使用机器学习时,你是不是经常因为有太多无关特征而导致模型效果不佳而烦恼? ? 而其实,降维就是机器学习中能够解决这种问题的一种好方法。...云计算的突破可以帮助使用者运行大型的机器学习模型,而不用管后台的计算能力。 但是,每增加一个新特征都会增加复杂性,增大使用机器学习算法的困难。...机器学习模型可以将特征映射到结果。...机器学习工具箱中的降维 简单总结一下。 过多的特征会降低机器学习模型的效率,但删除过多的特征也不太好。...数据科学家可以用降维作为一个工具箱,生成好的机器学习模型,但和其他工具一样,使用降维的时候也有许多问题,有许多地方都需要小心。 作者简介 ?

    50140

    机器学习的数学,拿你如何是好

    热烈欢迎各位新朋友,前面写了这么多机器学习的概念解说,原来大家只喜欢我推书呀,真·五味杂陈。今天聊机器学习在数学基础方面的经典推荐。 应该说,学机器学习,数学是无论如何也绕不过去的一道坎。...不过呢,学机器学习里面的数学有一点好。 虽然口头上我们称之为机器学习的数学基础,听起来像是网络里的协议栈,数学是底层,机器学习是应用层,机器学习的数学要更高级更难一点。...所以,学机器学习的数学,要远比你想象中要学的少很多。 好了,那机器学习的数学到底该怎么学呢?无非两个字,概念。...不少观点认为机器学习就是个换了个皮的统计学,所以有人干脆激进一点,就把机器学习叫作统计学习。这里且不争论,但机器学习大量使用了统计学的概念和方法是的的确确的事实。...那对于机器学习,我们怎样才能快速了解机器学习是做什么的,又涉及哪些数学分支呢?

    64320

    机器学习在好分期资金适配中的应用实践

    机器学习和深度学习技术在很多领域扮演着越来越重要的角色,以资金适配领域来说,它们在成本节约、推荐排序、收入机会和风险监控等方面可以带来明显的好处。...但目前,机器学习和深度学习技术在资金适配方面的应用和探索仍缺乏一些经验。因此,消费分期产品“好分期”团队编写此文进行实践记录,同时也希望大家能提供一些宝贵意见。...为解决问题,我们开始将机器学习等技术应用到系统中。 机器学习在资金适配系统的实践 在金融领域,机器学习的应用越来越多,金融领域庞大的数据量也为机器学习提供了支持。...机器学习项目的成功主要依赖于构建高效的基础结构、收集适当的数据集和应用正确的算法。 用户画像 想要解决上面所说的问题,需要先尝试生成用户画像,这里面用户数据的收集和清洗是至关重要的。...应用实践 下图展示了好分期数据平台的总体架构。对于数据平台来说,最重要的是保证数据的时效性和准确性。

    83600

    机器学习平台带给QA的挑战

    机器学习平台是一款集数据集、特征工程、模型训练、评估、预测、发布于一体的全流程开发和部署的工作平台。...在谈测试机器学习平台带给QA的挑战之前,先了解一下机器学习平台是什么?...即数据科学家们的日常工作流程有: 问题定义 数据收集 预处理 构造数据集 特征工程 建模、调参 部署、在线验证 循环优化 ---- 机器学习平台的主要业务 简单理解,机器学习平台就是帮助数据科学家工作变得更简单...即机器学习平台主要业务包括(如图2): ? 图2....其它 集成Jupyter Notebook 调度等等 ---- QA面临的挑战 了解了机器学习平台的主要业务功能后,谈谈机器学习平台测试过程中,QA所面临的挑战,以及在实践的所使用的应对方案。 1.

    1.8K10

    机器学习平台的模型发布指南

    导读:近两年,各式各样的机器学习平台如雨后春笋一样出现,极大地降低了从业者的门槛。大家的关注点往往在平台如何能够高效地进行各种花样地数据预处理,如何简单易用地训练出各种模型上。但是在产出模型之后呢?...作为机器学习平台的构建者,在得到应用于不同场景、不同类型的模型后,接下来需要思考的就是模型产生价值的场景,比如: 实时预测服务:兼容不同模型,包装成用于预测的功能,进一步发布面向用户的高时效性的预测服务...所以模型发布常常碰到如下挑战: 平台往往会提供交互式的云端机器学习开发环境,供用户训练自己的模型,所以平台API需要兼容输入输出差异巨大的模型 在通过GraphDef重构模型,Weight复现参数后,作为一个图结构...api,并发布成平台服务,暴露给用户 得力于机器学习框架对运行时环境要求的一致性,平台只需要针对每种机器学习框架,把模型发布代码及依赖打包成一个Docker镜像,就能满足该框架里所有模型的发布需求...实际上,在构建机器学习平台的后期,在平台的功能点趋于稳定,各个功能的模块化日益完善的条件下,下一步必然向着更加自动化进行的,是离不开自身模型的应用的。

    3.5K30

    从零搭建机器学习平台Kubeflow

    总的来说,Kubeflow是 google 开源的一个基于 Kubernetes的 ML workflow 平台,其集成了大量的机器学习工具,比如用于交互性实验的 jupyterlab 环境,用于超参数调整的...作为一个“大型工具箱”集合,kubeflow 为机器学习开发者提供了大量可选的工具,同时也为机器学习的工程落地提供了可行性工具。...1.2 Kubeflow 背景 Kubernetes 本来是一个用来管理无状态应用的容器平台,但是在近两年,有越来越多的公司用它来运行各种各样的工作负载,尤其是机器学习炼丹。...1.3 Kubeflow与机器学习 Kubeflow 是一个面向希望构建和进行 ML 任务的数据科学家的平台。...下图显示了 Kubeflow 作为在 Kubernetes 基础之上构建机器学习系统组件的平台: kubeflow是一个胶水项目,它把诸多对机器学习的支持,比如模型训练,超参数训练,模型部署等进行组合并已容器化的方式进行部署

    8.6K43
    领券