上一篇文章讲解了链表的相关知识,并用代码实现了一个链表结构。那么本文将介绍一下另一种特殊的链表结构,叫做 双向链表。 顾名思义,普通的链表都是从 head 开始往后遍历结构内的元素,那么双向链表就是既可以从头开始遍历,又可以从结构的末尾开始遍历。
此文会先探讨下什么是链表以及在 JavaScript 中的链表,接着我们会使用 JavaScript 这门语言动手实现下各类链表的设计,最后我们会抛出一些常规疑问,并从各个方面一一解答,总之,目的就是完全搞定链表
也就是我们之前实现的链表结构。单向链表只能从头遍历到尾或者从尾遍历到头(当然一般都是从头到尾)。换言之,链表链接的过程是单向的。
正如文章 Data Structures With JavaScript: Singly-Linked List and Doubly-Linked List 中所言,链表这种数据结构非常像电视节目里的 寻宝游戏 —— 而不是 火车。
链表作为一种数据结构,它存放着有序元素的集合。元素与元素之间通过指针连接,因此在链表中添加或删除元素只需要修改指针的指向即可,执行速度相比数组有得到显著的提升。 现实生活中也有许多使用到链表的例子,例如兔子舞,每个人勾肩搭背组合而成,其中人相当于链表中的元素,勾肩搭背的手相当于链接每个人的指针,在队列中加入一个人,只需要找到想加入的点,断开连接,插入一个人再重新连接起来。 本文将详解链表以及链表其他变相的实现思路并使用TypeScript将其实现,欢迎各位感兴趣的开发者阅读本文。
在很多编程语言中,数组的长度都是固定的,如果数组已被数据填满,再要加入新的元素是非常困难的。而且,对于数组的删除和添加操作,通常需要将数组中的其他元素向前或者向后平移,这些操作也是十分繁琐的。
本专辑所有文章&源码&测试环境均托管在 GitHub 仓库[1] 欢迎同学们 Star 和 Fork。
上一篇面的【腾讯一面】过了,接着第二天就开始二面了,后面基本上从简单的基础算法问的比较多,还有vue,typescript等等。
运用你所掌握的数据结构,设计和实现一个 LRU(最近最少使用)缓存机制。它应该支持以下操作:
线性表是由 n 个数据元素组成的有限序列,也是最基本、最简单、最常用的一种数据结构。
双向链表 双向链表应用实例,双向链表的操作分析和实现 管理单向链表的缺点分析: 单向链表,查找的方向只能是一个方向,而双向链表可以向前或者向后查找。 向链表不能自我删除,需要靠辅助节点 ,而双向链表,则可以自我删除,所以前面我们单链表删除 时节点,总是找到 temp,temp 是待删除节点的前一个节点(认真体会). 分析了双向链表如何完成遍历,添加,修改和删除的思路 双向链表实现思路 分析 双向链表的遍历,添加,修改,删除的操作思路===》代码实现 遍历 方和 单链表一样,只是可以
其实无论在任何语言中,一种数据结构往往会有很多的延伸和变种以应对不同场景的需要。其实前面我们所学过的栈和队列也是可以用链表来实现的。有兴趣的小伙伴可以自己尝试着去实现以下。
list 双向链表容器 的 元素的指针 : 容器 中的元素 , 包含 2 个指针 , 一个指向该元素的前驱 , 一个指向该元素的后继 ;
前端工程师对于算法和数据结构这块的知识的掌握程度,是进阶高级工程师的非常重要的标志之一,为了总结一下数据结构和算法方面的知识,笔者今天继续把链表这一块的知识补上,也作为自己知识体系的一个梳理,笔者早在去年就写过一篇关于使用javascript实现二叉树和二叉搜索树的文章,如果感兴趣或者想进阶高级的朋友们可以参考学习一下: JavaScript 中的二叉树以及二叉搜索树的实现及应用.
虽然名字听上去比较复杂单循环链表,但是实现起来比单链表(全名:不带头、不循环、单向链表)更加简单,也不需要过多考虑特殊情况;
在我之前的一篇文章(https://humanwhocodes.com/blog/2019/01/computer-science-in-javascript-linked-list/)中,讨论了在 JavaScript 中创建单向链表(如果您还未读过之前那篇文章,我建议您先去阅读一下)。单向链表由节点组成,每个节点都有一个指向列表中后一个节点的指针。单向链表的操作通常需要遍历整个列表,所以性能一般较差。而在链表中每个节点上添加指向前一个节点的指针可以提高其性能。每个节点有分别指向前一个节点和后一个节点的指针的链表就称为双向链表。
链表是线性表的链式存储方式,逻辑上相邻的数据在计算机内的存储位置不一定相邻,那么怎么表示逻辑上的相邻关系呢?
里面介绍了个心跳服务的宕机判断算法,当时只是理论分析了下使用 LRU 算法来实现,没有手撕代码。
其实无论在任何语言中,一种数据结构往往会有很多的延伸和变种以应对不同场景的需要。其实前面我们所学过的栈和队列也是可以用链表来实现的。有兴趣的小伙伴可以自己尝试着去实现以下。 有点跑题了...,我们还是说回链表,在基础链表之外,还有双向链表和循环链表和双向循环链表。这篇文章会详细的介绍一下双向链表,但是不会详细的去讲解循环链表。因为其实真的没有太大的区别。链表和循环链表的唯一的区别在于,最后一个元素指向下一个元素的指针不是null,而是head。 其实循环链表只能从头到尾的循环,而双向循环链表可以
在Go语言中,我们无法直接画图,但我可以帮助你描述如何使用Go语言来表示和操作多数组表示的双向链表和单数组表示。
双向链表每个元素都是一个对象,每个对象包括一个数据域和两个指针域next和prev。
双向链表是指含有往前和往后两个方向的链表,即每个结点中除存放下一个节点指针外,还增加一个指向其前一个节点的指针。其头指针head是唯一确定的。
输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的循环双向链表。要求不能创建任何新的节点,只能调整树中节点指针的指向。
LRU 缓存机制可以通过哈希表辅以双向链表实现,我们用一个哈希表和一个双向链表维护所有在缓存中的键值对。
LFU 算法 /** * @param {number} capacity */ var LFUCache = function (capacity) { this.map = new Map();// 存放 key:node 的索引,便于快速访问节点 this.freqArr = new Array() // 定义一个频次数组,存放一个双向链表 this.capacity = capacity // 可以保存的容量 this.minFreq = 1 // 方便找到
接上一篇博客 【Netty】Netty 核心组件 ( Pipeline | ChannelPipeline ) 内容 , 在 debug 调试中 , 详细分析 ChannelPipeline 内部的 Handler 双向链表 ;
通过上述代码示例,我们实现了双向链表的基本操作,包括初始化、插入和删除节点,以及遍历链表。双向链表是一种灵活且高效的数据结构,适用于需要频繁插入和删除操作的场景。通过深入理解双向链表的实现原理,我们可以更好地应用它解决实际问题。
前几节学习了「链表」、「时间与空间复杂度」的概念,本节将结合「循环链表」、「双向链表」与 「用空间换时间的设计思想」来设计一个很有意思的缓存淘汰策略:LRU缓存淘汰算法。
链表是一种数据结构,和数组不同,链表并不需要一块连续的内存空间,它通过「指针」将一组零散的内存块串联起来使用,如图所示:
链表是一种物理存储单元上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的。链表由一系列结点(链表中每一个元素称为结点)组成,结点可以在运行时动态生成。链表的节点由数据和一个或多个指针域组成。如果不考虑插入、删除操作之前查找元素的过程,只考虑纯粹的插入与删除,那么链表在插入和删除操作上的算法复杂 O(1)。
LRU(Least Recently Used)算法是一种缓存淘汰算法,常用于缓存系统中,通过保留最近使用的数据而淘汰最久未使用的数据,以提高缓存的命中率。LRU算法的核心思想是基于时间局部性原理:最近访问的数据在未来会被再次访问。
要想在O(1)时间内get到已存的值,可以使用哈希表,而哈希表存储键值是没有先后顺序的,因此就不能够在O(1)的时间内删除最久未使用的元素,可以采用双向链表,链表的优点是插入删除元素快,而且维护键值的先后顺序,我们结合哈希表和双向链表的优势,用哈希表结合双向链表方式实现LRU。
上一节学习了单向链表单链表详解。今天学习双链表。学习之前先对单向链表和双向链表做个回顾。 单向链表特点: 1.我们可以轻松的到达下一个节点, 但是回到前一个节点是很难的. 2.只能从头遍历到尾或者从尾遍历到头(一般从头到尾) 双向链表特点 1.每次在插入或删除某个节点时, 需要处理四个节点的引用, 而不是两个. 实现起来要困难一些 2.相对于单向链表, 必然占用内存空间更大一些. 3.既可以从头遍历到尾, 又可以从尾遍历到头 双向链表的定义: 双向链表也叫双链表,是链表的一种,它的每个数据结点中都有两个指针,分别指向直接后继和直接前驱。所以,从双向链表中的任意一个结点开始,都可以很方便地访问它的前驱结点和后继结点。下图为双向链表的结构图。
目录 前言 写在前面的话 链表类型区别 带头+双向+循环链表增删查改实现 接口展示 构建节点类型 创建链表及初始化 节点开辟 链表摧毁 链表打印 链表尾插 链表尾删 链表头插 链表头删 链表查找 链表pos位置前插 链表pos删除 总结 ---- 前言 ---- 本章将带你们走进带头双向循环链表的实现与讲解 写在前面的话 ---- 在前一章我们学习实现了单链表(无头单向不循环链表),这里我们引入带头双向循环链表 很明显这两种结构截然不同,但都是作为链表最常使用链表结构 前者因其结构上的缺点
写在前面 刷题的时候看到一个关于链表的题目,写了一会发现写不出来,所以干脆就将链表的知识使用js重现一遍,这里写一个js实现的链表。 链表结构介绍 没有写代码之前呢我们先简单的说一下什么是链表,我们都知道,在很多的数据结构中,有序的结构我们比较熟悉是数组,数组和链表还有一些不同,数组是内存空间按照挨个顺序来的,那么链表的话是可以不按照顺序来的,链表结构是当前元素(data),下一个元素(next),上一个元素(pre),第一位是head,最后一位的next指向null 链表分为下面几种常见的!
2. 双向链表应用实例 2.1 双向链表的操作分析和实现 使用带 head 头的双向链表实现 –水浒英雄排行榜 单向链表,查找的方向只能是一个方向,而双向链表可以向前或者向后查找。 由于之前已经做过单链表的基础操作,理论上来上手双向链表的比较简单的,可以直接看代码就理解,这里不多废话。 双向链表无非多了一个pre(前一个数) 分析 (1) 遍历 和 单链表一样,只是可以向前,也可以向后查找。 (2) 添加 (默认添加到双向链表的最后) 先找到双向链表的最后这个节点 temp.next = newHero
双向链表也叫双链表,是链表的一种,它的每个数据结点中都有两个指针,分别指向直接后继和直接前驱。所以,从双向链表中的任意一个结点开始,都可以很方便地访问它的前驱结点和后继结点。
① 保存信息 : ChannelHandlerContext 类中保存与 Channel 通道 , ChannelHandler 通道处理者 , 相关的信息 ;
双向链表也是链表的一种,区别在于每个节点除了后继指针外,还有一个前驱指针,双向链表的节点长下面这样:
前言:前面介绍了循环链表,虽然循环链表可以解决单链表每次遍历只能从头结点开始,但是对于查询某一节点的上一节点,还是颇为复杂繁琐,所以可以在结点中加入前一个节点的引用,即双向链表
下面的 std::list#insert 函数原型的作用是 在 指定的 迭代器位置 position 上 , 插入 1 个 value 值元素 ;
缓存是一种提高数据读取性能的技术,在硬件设计、软件开发中都有着非常广泛的应用,比如常见的CPU缓存、数据库缓存、浏览器缓存等等。
有时,我们为了更加方便地对链表进行操作,会在单链表的第一个结点前附设一个结点,称为头结点.
了解过线性表的链式存储结构以后,有人就想出来用数组来代替指针,来描述单链表。看看他们是怎么做到的。
双向链表(Doubly Linked List)是一种常见的数据结构,在单链表的基础上增加了向前遍历的功能。与单向链表不同,双向链表的每个节点除了包含指向下一个节点的指针外,还包含指向前一个节点的指针。
LinkedHashMap内部维护了一个双向链表,能保证元素按插入的顺序访问,也能以访问顺序访问,可以用来实现LRU缓存策略。
前两篇我们详细介绍了链表,我们知道链表是元素互相独立,但是又互相连接的一个有序集合。当我们查询某一个元素的时候,必须从表头开始,一级一级向后查找。
领取专属 10元无门槛券
手把手带您无忧上云