首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    从业务角度理解深度学习及其应用

    近几年,深度学习在图像、音频处理等领域得到了广泛的应用并取得了骄人的成绩,本文根据笔者的工作实践,谈谈对深度学习理解,以及我们的应用和经验。文章涉及的很多结论,是笔者个人的理解和不充分实验的结果,所以难免谬误,请读者不吝指正。 机器学习就是学习对象的表示 “机器学习/深度学习模型依靠左右互搏,可以迅速达到很高的智能水准。”、“人工智能/深度学习能毁灭人类的奇点即将来到!” 网络上经常出现这类观点,让笔者非常惊讶。而让笔者更惊讶的是,很多人居然相信了。那么,什么是机器学习呢? 机器学习的对象是我们生活中所接触

    02

    智能存储 :一站式AI内容识别加速内容生产

    导语 数据万象内容识别基于深度学习等人工智能技术,与对象存储 COS 深度融合,底层直接调用COS的数据,实现数据存储、流动、处理、识别一体化,提供综合性的云原生 AI 智能识别服务,包含图像理解(解析视频、图像中的场景、物品、动物等)、图像处理(一键抠图、图像修复)、图像质量评估(分析图像视觉质量)、图像搜索(在指定图库中搜索出相同或相似的图片)、人脸识别、文字识别、车辆识别、语音识别、视频分析等多维度能力。用户可使用数据万象提供的自动化工作流或批量任务处理串联业务流程,大幅减少人力成本,缩短产出时间的同

    03

    AIGC席卷智慧办公,金山办公如何架构文档智能识别与理解的通用引擎?

    如今,智慧办公是企业办公领域数字化转型的题中之义。作为国内最早开发的软件办公系统之一,金山办公如何应用深度学习实现复杂场景文档图像识别和技术理解?本文将从复杂场景文档的识别与转化、非文本元素检测与文字识别、文本识别中的技术难点等多个方面进行深度解析。 作者 | 金山办公CV技术团队 出品 | 新程序员 在办公场景中,文档类型图像被广泛使用,比如证件、发票、合同、保险单、扫描书籍、拍摄的表格等,这类图像包含了大量的纯文本信息,还包含有表格、图片、印章、手写、公式等复杂的版面布局和结构信息。早前这些信息均采用

    01

    论文解读 LLaMA-Adapter V2 多模态领域又一佳作

    在本文中,我们提出了LLaMA-Adapter V2,一种参数高效的视觉指令模型。具体而言,我们首先通过解锁更多可学习参数(例如,norm、偏置和比例),增强LLaMA Adapter,这些参数在整个LLaMA模型中分布指令跟踪能力。其次,我们提出了一种早期融合策略,只将视觉token输入到早期的LLM层,有助于更好地融合视觉知识。第三,通过优化可学习参数的不相交组,引入了图像-文本对和指令跟踪数据的联合训练范式。这种策略有效地缓解了图像-文本对齐和指令跟踪这两个任务之间的干扰,并通过小规模的图像-文本和指令数据集实现了强大的多模态推理。在推理过程中,我们将额外的专家模型(例如,字幕,OCR系统)集成到LLaMA-Adapter中,以在不增加训练成本的情况下进一步提高其图像理解能力。与原始的LLaMA-Adapter相比,LLaMA-Adapter V2只需在LLaMA上引入14M参数,就可以执行开放式多模态指令。新设计的框架还展示出更强的基于语言的指令跟踪能力,甚至在聊天互动中表现出色。

    03

    【ImageNet最后的冠军】颜水成:像素级标注数据集将引领计算机视觉下一个时代

    【新智元导读】2017年,ImageNet ILSVRC正式宣告终结。在计算机视觉领域深耕16年的“老兵”颜水成与团队拿下最后冠军,巧合的是,5年前的PASCAL VOC收官之战,冠军也是他。有“水哥”之称的颜水成可谓计算机视觉竞赛领域名副其实的常胜将军。在本次接受新智元的专访中,他分享了自己多年来的战斗经历和实战经历。现在已担任副教授的他,对学生也有许多寄语。颜水成认为,计算机视觉的未来属于多标签、像素级、语义级分析。 颜水成,360副总裁、人工智能研究院院长,新加坡国立大学终身教职,作为计算机视觉界的老

    04
    领券