【大数据100分】冯一村:数据可视化的魅力 主讲嘉宾:冯一村 主持人:中关村大数据产业联盟 副秘书长 陈新河 承办:中关村大数据产业联盟 嘉宾介绍: 冯一村:海云科技创始人 。海云数据是一家做数据可视化的的初创公司。海云数据是“微软创投加速器”第四期入驻的企业。 以下为分享实景全文: 冯一村:大家好,很高兴在微信的平台上和大家来交流。在群里面,大家都是大数据方面的专家,而海云数据还只是一家创业公司,还请大家多多支持。我是海云数据的冯一村。 下面正式进入主题,我们知道大数据的概念已经很火爆了,也看到大家
当“数据大屏”成为一种可以标准化输出的可视化解决方案,非专业的小白也能轻易上手?7月15日数据侠实验室第15期活动中,阿里云开发专家、DataV核心开发者郑新林为我们介绍了阿里在大屏方面的产品布局,并通过多场景的大屏应用案例,从技术角度分享了如何通过DataV系统快速搭建一个数据大屏。
原作者 Amy Lee Walton 编译 CDA 编译团队 本文为 CDA 数据分析师原创作品,转载需授权 当设计地图时,我会想:我想让观看者如何阅读地图上的信息?我想让他们一目了然地看出地理区域的测量结果变化吗?我想要显示出特定地区的多样性吗?或者我想要标明某个区域内的高频率活动或者相对的体积/密度? 有多种方法可以在地图中快速而集中的呈现出可视化数据。我常用的几个是: · Dot density (点密度图) ——使用点或其他符号展示特征或现象的集体情况(密度)的地图样式。例如,显示区域内的交
工作中,我们常常会遇到各式各样的数据,例如网站性能,销售业绩,客户服务 、营销活动等数据。对于这些数据,有哪些行之有效的方法来形象化数据,挖掘数据关系,提升数据价值呢?
作者|Qing Feng,Peter 译者|CarolGuo 编辑|Emily AI 前线导读:机器学习在 Uber 改善应用程序的用户体验方面发挥着核心作用。鉴于 Uber 业务的规模和范围,我们经常需要创造性地思考如何设计这些系统。譬如,在开发合作伙伴活动矩阵(Partner Activity Matrix,一种基于总体使用趋势的个性化司机体验的新工具)时,我们从基因组可视化的生物医学技术(基因组双聚类)中找到了灵感。 更多干货内容请关注微信公众号“AI 前线”,(ID:ai-front) 通过使用
早就有人称赞过DT君的数据可视化是业界清流,也经常有想要入门的同学前来求教。那么,作为一名专业的可视化设计师,如何能够结合具体业务做出炫酷的可视化作品呢?
上文分享了一些matlab的绘图方法,也给读者推荐3本科研绘图的参考书。同时文末活动(欢迎大家文末留言分享matlab的高阶绘图应用方法,精选3位读者,赠送《MATLAB科研绘图与学术图表绘制从入门到精通》一本)
本文描述了如何 使用R执行主成分分析 ( PCA )。您将学习如何 使用 PCA_预测_ 新的个体和变量坐标。我们还将提供 _PCA 结果_背后的理论。
背景 近几年,low code、no code、pro code等越来越多的出现在我们的视野中。抱着不被卷的心态 ?,我决定来深入探索一下。 “我所在的是营销部门。每天/月都承载着大量的营销活动,本文
通过2D瓦片图层的3D化,能够在经度维度、量级、时间多个维度上真实还原城市3D空间。例子中为模拟的轨迹数据和旧金山食物供应商分布。
好的数据质量是获得可靠结果的前提,而预处理的质量往往对后处理的结果存在一定的影响。脑电的数据对噪音的敏感性很强,为了提高您数据的质量,在更大程度上将数据中的信噪比提高,获得更严谨的科研结果,我们会对您的数据进行高质量的预处理。
以前写过不少和稳定性相关的文章,其中介绍了不少稳定性保障的实践案例和方法,比如全链路压测和服务治理,这些案例和方法更多的是技术层面解决问题的方法和手段。但为什么要做稳定性保障?如何理解稳定性保障?以前一直没太想明白。最近整理之前的技术笔记,翻了很多资料,对这个问题的理解开始清晰了。
数据可视化是数据展示的常见方式,所谓一图抵千言,好的图表能高效传递信息,让观众一目了然,差的图表往往会不知所云。
本文将用一个简单的人工智能算法,即线性回归算法,预测阿里巴巴 2019 年双 11 的交易额。
上篇文章古柳写了下关于念念不忘三年的颜色可视化的超长文,整个流程涉及: python 爬b站 api 李子柒数据、搭配 you-get 下载视频、ffmpeg 批量视频抽帧、node.js get-image-colors 模块抽图片颜色,d3.js 颜色可视化。
11月12日凌晨,2020天猫双11落下帷幕,淘宝天猫官方消息,天猫双十一成交额4982亿。媒体报道各不相同,但聚焦的都是4982亿这张照片,它就是天猫双十一向全球提供的唯一窗口--媒体中心的数据大屏。
今天不分享技术文,推荐一门不错的可视化课,搞可视化方向的应该都知道月影大佬。他的小册我也买了,都是干货啊!
在机器学习EDA阶段,变量分析及可视化是常做的事情,这篇文章总结变量分析中,最常使用的单变量,双变量分析以及可视化。
因数字而变,因数字而兴。数字中国建设正乘着数字化变革的东风,昂首阔步迈上新征程。在全球经济复苏乏力的背景下,数字经济伴随信息革命浪潮快速发展、逆势上扬。
随着技术的进步,功能磁共振成像(fMRI)已成为脑疾病、认知神经科学等领域的重要研究手段。思影科技紧随潮流,推出了一系列fMRI数据处理培训课程,广受相关领域研究者们的好评。在解决研究者们学习需求的同时,科研合作也变得日趋重要。为此,思影科技推出fMRI数据处理服务,以更好地协助解决大家面临的科研问题,如感兴趣请联系杨晓飞siyingyxf或19962074063(微信号)进行咨询,电话:18580429226
如果选择了错误的图表类型,或只是默认使用最常见的图表类型,可能会使用户感到困惑,或对数据的意义产生误解。
如今,商业领域的决策越来越重视数据驱动,数据可视化已经是当今的潮流。高质量的数据可视化能帮助人们更好地解读数据的意义,发掘数据背后的价值。但是我们发现,实践中很多图表并不容易让人理解,甚至会产生误导。
如今,商业领域的决策越来越重视数据驱动,数据可视化已经是当今的潮流。高质量的数据可视化能帮助人们更好地解读数据的意义,发掘数据背后的价值。但是我们发现,实践中很多图表并不容易让人理解,甚至会产生误导。因此本文列出如下20条优化建议,希望能够帮助你实现更好的数据可视化。 01 选择正确的图表类型 如果选择了错误的图表类型,或只是默认使用最常见的图表类型,可能会使用户感到困惑,或对数据的意义产生误解。 一个数据集可以用很多种方式来表述,具体采用哪种方式要取决于用户的需求。 所以一定要从检查数据集和调研用户需求着
COVID-19对航空网络的拓扑结构和属性都有很大的影响,其影响的结果表现在网络鲁棒性、连通性和活动性的下降,以及疫情区域的航空网络状态的变化(点击文末“阅读原文”了解更多)。
随着疫情的影响以及新兴技术的不断发展,展会的发展形式也逐渐从线下转向线上。通过“云”上启动、云端互动、双线共频的形式开展。通过应用大数据、人工智能、沉浸式交互等多重技术手段,构建数据共享、信息互通、精准匹配的高精度“云展厅”,突破时空壁垒限制。
选择错误的图表类型或默认使用最常见的数据可视化类型可能会混淆用户或导致数据误解。相同的数据集可以以多种方式表示,具体取决于用户希望看到的内容。始终从审查您的数据集和用户访谈开始。
在制作数据报告时,为了更好的描述文案叙述内容,我们会按照文案内容制作相关的可视化图表。但往往,经常会遇到图表没有充分表述好文案内容,甚至是和内容完全不符的情况。这就是我们常常说的图文不符。
数据可视化是将信息转换为可视化上下文(例如地图或图形)的实践,以使人脑更容易理解数据并从中获取见解。数据可视化的主要目标是更容易识别大型数据集中的模式、趋势和异常值。该术语通常与其他术语互换使用,包括信息图形、信息可视化和统计图形。
数据可视化,即通过图表形式展现数据,帮助我们快速、准确理解信息。好的可视化会“讲故事”,能向我们揭示数据背后的规律。
9 月 8 日至 11 日,以“全球发展:共享数字机遇 投资绿色未来”为主题的第二十二届投洽会将在厦门国际会展中心举行。2022国际投资论坛是投洽会最具代表性的品牌活动,分论坛围绕数字经济和绿色化工分享发展机遇展开。在投洽会的项目对接中心,围绕数字经济、工业互联网、人工智能、生物医药和元宇宙等十几个产业赛道,配套举办相关项目路演和专场对接。图扑软件在 B4 号馆 B4082 展位带你开启元宇宙之旅。
截止 2021 年,全球已有 127 个国家做出了“碳中和”的承诺,能源低碳转型和实现碳中和已经成为全球共同的战略目标。根据权威机构预测,到 2050 年,可再生能源发电将占到全球总发电量的 75% 以上。作为清洁能源的典型代表,风电将满足 35% 的电力需求,并为气候目标贡献 27% 的碳减排量。
小序:做数据可视化的时候,很多时候 UI 妹纸非得自己搞一套设计,可是明明前端图表库已经设定好是这样这样,她非得那样那样;所以,为难咱前端切图仔,必须得掌握点理论知识,才有可能和妹纸进一步的沟通,从而实现良性发展、共同进步。。。🐶 ---- 现如今的应用程序(设计、运营、迭代等)都高度依赖数据,由数据来驱动,我们对于 数据可视化 的需求也愈来愈高。 然而,时不时的,我们总是会遇到一些让人产生疑惑的可视化展示。所以,需要做点什么,来尽力规避这种“混乱”,能否梳理出一些简单的规则来改变这一点? 规则的魅力并不
作为小程序开发商,你最怕听到客户说什么?“这个真的太难了,我们不会用啊。”或是“这个操作也太复杂了吧,得耽误不少事情。”于是我们在不断简化操作,给客户提供个性化服务的道路上越走越远,越走越用心。
本文将从可视化量子编程软件界面可视化、操作便捷性、易用性等方面分析IBM Quantum Composer、QCEngine、Qin的量子电路绘制功能。
一、从数据维度做拆分,让目标更加落地。 我做过近两年的电商运营,其中感触很深的一个点就是从数据的维度对目标做拆分。 天猫的双11刚刚过去,马云又创造了新的成绩,912亿。从去年的571亿到今年的912
数据是非常强大的。当然,如果你能真正理解它想告诉你的内容,那它的强大之处就更能体现出来了。 通过观察数字和统计数据的转换以获得清晰的结论并不是一件容易的事。必须用一个合乎逻辑的、易于理解的方式来呈
数据是非常强大的。当然,如果你能真正理解它想告诉你的内容,那它的强大之处就更能体现出来了。 通过观察数字和统计数据的转换以获得清晰的结论并不是一件容易的事。必须用一个合乎逻辑的、易于理解的方式来呈现数
当冬奥的圣火再次点燃北京,北京这座全球唯一的双奥之城,让这场万众期待,共同参与的冰雪之约成为世界的历史性盛宴,为世界奉献一届精彩、非凡、卓越的奥运盛会。
首先,简单介绍一下作者,宁海涛是211硕士毕业,先后学习Python进行深度学习模型构建以及可视化展示,当然还包括数据分析、数据处理、数据可视化等技能,此外,还特别擅长于使用R语言进行数据统计和可视化绘制,当然还有一些前端、爬虫等这里就不做解释,总之是一位比较全能的优质作者。从2020年5月一直到现在,已连载超过「185+优质原创文章」。
最近疫情一直都在反反复复,几个城市都出现了确诊病例,感觉又回到了之前每天看信息图的那会儿。
作为城市公共交通的核心,机车的能耗管理不仅直接关系到运营成本,更牵涉到环境保护和能源的高效、可续利用。传统的机车监控手段在现代化需求面前已显得力不从心,亟需构建一个能实时收集和分析运营数据的高效、智能、全面的智能化监控平台。利用先进的可视化技术实时收集分析运营数据,将机车运行状态、能耗情况等信息直观、准确地展现出来,为运营管理和决策提供科学依据。
之前看其他大佬的项目,只在意他们通过可视化的数据集,对数据特征挖掘的思路,但没有在意他们做可视化的工具。轮到自己做的时候就发现,wtf!matplotlib可以更难用一点嘛?别人酷炫狂拽,坐标轴上还有直方图的可视化究竟是怎么弄的?
本文转自网络,如涉侵权请及时联系我们 数据可视化可以帮你更容易的解释趋势和统计数据。 数据是非常强大的。当然,如果你能真正理解它想告诉你的内容,那它的强大之处就更能体现出来了。 通过观察数字和统计数据的转换以获得清晰的结论并不是一件容易的事。必须用一个合乎逻辑的、易于理解的方式来呈现数据。 谈谈数据可视化。人类的大脑对视觉信息的处理优于对文本的处理——因此使用图表、图形和设计元素,数据可视化可以帮你更容易的解释趋势和统计数据。 但是,并非所有的数据可视化是平等的。(点击“为什么大多数人的图表和图形看
数据是非常强大的。当然,如果你能真正理解它想告诉你的内容,那它的强大之处就更能体现出来了。 通过观察数字和统计数据的转换以获得清晰的结论并不是一件容易的事。必须用一个合乎逻辑的、易于理解的方式来呈现数据。 谈谈数据可视化。人类的大脑对视觉信息的处理优于对文本的处理——因此使用图表、图形和设计元素,数据可视化可以帮你更容易的解释趋势和统计数据。 点击这里下载我们的免费指南,关于数据可视化更多的例子和提示。 但是,并非所有的数据可视化是平等的。(点击“为什么大多数人的图表和图形看起来像废话”了解我想表达的意思)
在日常工作中,为了更直观的发现数据中隐藏的规律,察觉到变量之间的互动关系,人们常常借助可视化帮助我们更好的给他人解释现象,做到一图胜千文的说明效果。
数据是非常强大的。当然,如果你能真正理解它想告诉你的内容,那它的强大之处就更能体现出来了。
根据IDC数据,2015年全球数据量的年增长率可达到5.6泽字节(即5.6万亿兆字节),是2012年增长率的两倍。
液化天然气 (Liquefied Natural Gas,简称 LNG) 在能源转型过程中被广泛认可为相对较清洁的能源选择。
上次给大家简单整理了一下细胞鉴定曲线图理解,里面使用nCount_RNA或者nFeature_RNA在R语言里面绘制细胞鉴定曲线,找到一个合适的cutoff值,进行了一个初步的质控。
智慧矿山是一个汇聚了多学科、多主题、多维空间信息的复杂系统,是在矿山地表和地下开采矿产资源的工程活动中所涉及的各种静、动态信息的全部数字化管理,智能分析,可视化展示,从而达到降本增效,实现企业利益的最大化。
领取专属 10元无门槛券
手把手带您无忧上云