另一个世界系列,从另一个角度看数据分析的方法、应用。 本文结构: 1、数据的时效性 2、流式计算与批量计算 3、总结与相关产品 (1) 流式计算流程 (2) 流式计算特点 (3) 相关产品 1、数据的时效性 日常工作中,我们一般会先把数据储存在一张表中,然后对这张表的数据进行加工、分析。既然数据要储存在表中,就有时效性这个概念。 如果我们处理的是年级别的数据,比如人口分析、宏观经济分析,那么数据最新日期距今晚个一两周、甚至一两个月都没什么关系。 如果我们处理的是天级别的数据,比如各大网站的用户偏好分析、零售
另一个世界系列,从另一个角度看数据分析的方法、应用。 循环、分支...都可以在Python中用函数实现! | 函数式编程,打开另一个世界的大门 本文结构: 1、数据的时效性 2、流式计算与批量计算 3、总结与相关产品 (1) 流式计算流程 (2) 流式计算特点 (3) 相关产品 ---- 1、数据的时效性 日常工作中,我们一般会先把数据储存在一张表中,然后对这张表的数据进行加工、分析。既然数据要储存在表中,就有时效性这个概念。 如果我们处理的是年级别的数据,比如人口分析、宏观经济分析
本文介绍了腾讯云批量计算在高性能计算场景下的优势,通过对比传统超算集群和云计算资源的不同,分析了腾讯云批量计算在成本、效率、易用性、场景覆盖、资源调度、安全合规等方面的优势。同时,文章还分享了腾讯云批量计算如何帮助企业优化计算流程,提升业务效率,降低企业成本,并推动高性能计算在更多场景的广泛应用。
而在 PLANNING RUN 的时候,SAP 又区分为 short term setting(for MRP, MPS ) and long term setting (for Long term planning )
网络流量分析机构Sandvine 2018年10月的《全球互联网现象报告》中显示,在全球整体的互联网下行流量中,视频占到了近58%。现在原始视频的分辨率越来越高,但是在互联网带宽有限的情况下,大部分视频提供商都需要将原始视频转码成多种清晰度的视频,便于用户在不同的网络环境中选择不同清晰度的视频进行观看。因此,视频转码成了必不可少的技术环节。
腾讯云批量型实例具有最优单位核时性价比,适用于渲染、基因分析、晶体药学等短时频繁使用超大规模计算节点的计算密集型应用。InstanceTypes分享腾讯云批量计算型BC1实例配置性能包括CPU、内存、使用场景及购买注意事项等信息:
腾讯云批量型服务器具有最优单位核时性价比,适用于渲染、基因分析、晶体药学等短时频繁使用超大规模计算节点的计算密集型应用。腾讯云百科分享腾讯云批量计算型BS1云服务器配置CPU内存性能注意事项:
Volcano是一个Kubernetes云原生的批量计算平台,也是CNCF的首个批量计算项目。
分享一篇关于实时流式计算的经典文章,这篇文章名为Streaming 101: The world beyond batch
提起大数据处理引擎,很多人会想到Hadoop或Spark,而在2019年,如果你身处大数据行业却没听说过Flink,那你很可能OUT了!Flink是大数据界冉冉升起的新星,是继Hadoop和Spark之后的新一代大数据处理引擎。2019年初,阿里巴巴以1.033亿美元的价格收购了总部位于德国柏林的初创公司Data Artisans,Data Artisans的核心产品是正是Flink。
目前主流的数仓架构—— Lambda 架构,能够通过实时和离线两套链路、两套代码同时兼容实时数据与离线数据,做到通过批处理提供全面及准确的数据、通过流处理提供低延迟的数据,达到平衡延迟、吞吐量和容错性的目的。在实际应用中,为满足下游的即席查询,批处理和流处理的结果会进行合并。
随着业务业务场景不断丰富,批量计算也由传统的HPC逐渐扩展到大数据、AI等多种场景,但各个领域独立发展,呈现出生态割裂、技术栈不兼容,资源利用率低等问题,严重影响批量计算的进一步发展
存储层,主要是负责存储企业各种系统产生的数据,如 Web 业务系统、订单系统、CRM 系统,ERP 系统、监控系统,数据比如系统的订单交易量,网站的活跃用户数,每个用户的交易额。
数据时代,从数据中获取业务需要的信息才能创造价值,这类工作就需要计算框架来完成。传统的数据处理流程中,总是先收集数据,然后将数据放到DB中。当人们需要的时候通过DB对数据做query,得到答案或进行相关的处理。这样看起来虽然非常合理,但是结果却非常紧凑,尤其是在一些实时搜索应用环境中的某些具体问题,类似于MapReduce方式的离线处理并不能很好地解决。 基于此,一种新的数据计算结构---流计算方式出现了,它可以很好地对大规模流动数据在不断变化的运动过程中实时地进行分析,捕捉到可能有用的信息,并把结果发送
2019刚刚拉开帷幕,在憧憬新的一年“诸”事大吉的同时,小编也想带着各位开发者朋友回顾一下腾讯位置服务的2018年,盘点那些我们一起经历过的2018年大事件。也正好借此机会感谢过去一年每一位开发者的支持和陪伴! 巧的是,我们正好精选了10个大事件,正可谓“十全十美”。当然,在服务开发者、助力行业伙伴的路上,我们一直在努力!雄关漫道真如铁,而今迈步从头越,期待2019继续有你同行! 01 5月向开发者提供海外位置服务 2018年5月,腾讯位置服务与HERE地图携手,对外开放专业和稳定的海外位
著有:《图解 Spark 大数据快速分析实战》;《offer 来了:Java 面试核心知识点精讲(原理篇)》;《offer 来了:Java 面试核心知识点精讲(架构篇)》。
TiDB 作为一款高效稳定的开源分布式数据库,在国内外的银行、证券、保险、在线支付和金融科技行业得到了普遍应用,并在约 20 多种不同的金融业务场景中支撑着用户的关键计算。在TiDB 在金融行业关键业务场景的实践(上篇)中,我们介绍了 TiDB 在银行核心交易场景的应用,本篇文章将主要分享 TiDB 在核心外围的关键业务场景的实践。
在现代科学和工程中,数值计算工程师会遇到大量复杂的数学计算问题。这些问题突出的共性表现在高维数、计算规模大、多时空尺度、强非线性等方面。批量处理Batch拥有一套完整的并行计算框架,适配常见的并行模型(MPI应用)。利用海量弹性的云资源,有力地支撑高性能科学计算应用软件和算法。
无服务器云函数(SCF)是腾讯云提供的Serverless执行环境,也是国内首款FaaS(Function as a Service,函数即服务) 产品。其核心理念是让用户将重心放在业务的逻辑实现上,而不用关心底层的运维包括服务器、存储、网络、自动扩缩容、负载均衡、代码部署等问题。
大数据是指海量数据或巨量数据,其规模巨大到无法通过目前主流的计算机系统在合理时间内获取、存储、管理、处理并提炼以帮助使用者决策。
提到大数据,其实最核心的在于计算,像双11实时统计交易量、智慧交通实时统计拥堵指数,这些离不开高并发计算。经常我们在听到mapreduce、以及spark、hive、pig、spark streaming、Storm,很多词语让我们迷茫,但实际万变不离其中,计算最核心的还是在于mapreduce。因此了解mapreduce的运行原理是必须的。
Kafka在0.10版本推出了Stream API,提供了对存储在Kafka内的数据进行流式处理和分析的能力。
在热捧容器、Kubernetes之际,是否有人关注到这么一个事实:其实Kubernetes的学习门槛很高、真能把容器用好的人并不多。
在上篇,我们一起学习了分布式计算中的 MapReduce 模式(分布式计算技术MapReduce 详细解读),MapReduce 核心思想是,分治法,即将大任务拆分成多个小任务,然后每个小任务各自计算,最后合并各个小任务结果得到开始的那个大任务的结果。
内容来源:2018 年 5 月 5 日,小米HBase研发工程师吴国泉在“ACMUG & CRUG 2018 成都站”进行《大数据时代系统体系架构和对比:存储与计算》演讲分享。IT 大咖说(微信id:itdakashuo)作为独家视频合作方,经主办方和讲者审阅授权发布。
数据分类:静态数据和动态数据。静态数据的常见应用是数据仓库。利用数据挖掘和OLAP (on-line analytical processing)分析工具从静态数据中找出对企业有用的数据。
Flink 同样遵循着分层的架构设计理念,在降低系统耦合的同时,也为上层用户构建 Flink 应用提供了丰富且友好的接口。
在介绍Lambda和Kappa架构之前,我们先回顾一下数据仓库的发展历程: 传送门-数据仓库发展历程
如图1-1所示,传统单体数据架构(Monolithic Architecture)最大的特点便是集中式数据存储,企业内部可能有诸多的系统,例如Web业务系统、订单系统、CRM系统、ERP系统、监控系统等,这些系统的事务性数据主要基于集中式的关系性数据库(DBMS)实现存储,大多数将架构分为计算层和存储层。
工作负载的分类方法和标准多种多样,其中 Google 提出的一种简单的分类标准广受认可,即将工作负载分为服务型和批处理型。
性能提升是一个非常重要的话题,特别是在大型系统当中,我们经常会使用perf/火焰图的方式去采集数据,从而分析出性能的瓶颈点,使用一些工具是比较简单的办法之一。
继一对多的距离计算服务后,腾讯位置服务近日再次升级,推出更为强大的距离矩阵(多对多)距离服务。从计算性能上来看,多对多矩阵最高支持25×25矩阵(一次请求计算路面距离625对),一对多最多支持1×200批量计算,批量计算能力达到业内领先水平。
机器之心报道 机器之心编辑部 伴随着 11 支获奖队伍的颁奖典礼举行,2021 WAIC 黑客松圆满落下帷幕。 2021 世界人工智能大会(WAIC)黑客松近日于上海举办。WAIC 黑客马拉松作为 WAIC 期间唯一的一场黑客松,由世界人工智能大会组委会办公室作为指导单位,由机器之心、MindSpore 开源社区、Waston Build 创新中心和六七八九集团主办。 本次黑客松分为两大赛道,设计了多道赛题,聚焦 AI 技术与应用热点问题,吸引了来自全球多个国家多个团队的开发者报名参赛。 7 月 9 日
Flink 的某些转换算子,如 join、coGroup、groupBy 算子,需要先将 DataStream 或 DataSet 数据集转换成对应的 KeyedStream 或 GroupedDataSet,主要目的是将相同的 key 值的数据路由到相同的 pipeline 中,然后进行下一步的计算操作。
静态数据:为了支持决策分析而构建的数据仓库系统,其中存放的大量历史数据就是静态数据。
随着移动设备、物联网设备的持续增长,流式数据呈现了爆发式增长,同时,越来越多的业务场景对数据处理的实时性有了更高的要求,基于离线批量计算的数据处理平台已经无法满足海量数据的实时处理需求,在这个背景下,各种实时流处理平台应运而生。
最近我在学习流式计算引擎Flink,正在阅读Flink的官方文档、一些技术博客以及《Streaming Processing with Apache Flink》这本书,并试图将一些知识整理下来,形成一个系列。
大数据文摘原创文章 作者:Larry,“大数据文摘”主笔,数据行业从业者。 编注:“大数据文摘”的很多读者亲友,一些纯粹的大数据爱好者,甚至有一部分企业管理者经常在后台向我们建议,希望我们能把大数
日常工作中,我们一般会先把数据存储在表,然后对表的数据进行加工、分析。既然先存储在表中,那就会涉及到时效性概念。
Lambda架构由Storm 的作者 [Nathan Marz] 提出, 根据维基百科的定义,Lambda 架构的设计是为了在处理大规模数据时,同时发挥流处理和批处理的优势。通过批处理提供全面、准确的数据,通过流处理提供低延迟的数据,从而达到平衡延迟、吞吐量和容错性的目的。为了满足下游的即席查询,批处理和流处理的结果会进行合并。
Lambda架构背后的需求是由于MR架构的延迟问题。MR虽然实现了分布式、可扩展数据处理系统的目的,但是在处理数据时延迟比较严重。实际上如果内存和CPU足够强大,MR也可以实现近实时运算,但实际业务环境并非如此,因此我们需要权衡,选择实时处理和批处理所需要数据量和恰当的资源。
经过这么多年的发展,已经从大数据1.0的BI/Datawarehouse时代,经过大数据2.0的Web/APP过渡,进入到了IOT的大数据3.0时代,而随之而来的是数据架构的变化。
在当代数据量激增的时代,各种业务场景都有大量的业务数据产生,对于这些不断产生的数据应该如何进行有效的处理,成为当下大多数公司所面临的问题。随着雅虎对hadoop的开源,越来越多的大数据处理技术开始涌入人们的视线,例如目前比较流行的大数据处理引擎Apache Spark,基本上已经取代了MapReduce成为当前大数据处理的标准。但是随着数据的不断增长,新技术的不断发展,人们逐渐意识到对实时数据处理的重要性。相对于传统的数据处理模式,流式数据处理有着更高的处理效率和成本控制能力。Flink 就是近年来在开源社区不断发展的技术中的能够同时支持高吞吐、低延迟、高性能的分布式处理框架。
day02-03_流批一体API 今日目标 流处理原理初探 流处理概念(理解) 程序结构之数据源Source(掌握) 程序结构之数据转换Transformation(掌握) 程序结构之数据落地Sink(掌握) Flink连接器Connectors(理解) 流处理原理初探 Flink的角色分配 JobMaster 老大, 主要负责 集群的管理, 故障的恢复, checkpoint 检查点设置 taskmanager worker 小弟, 具体负责任务的执行节点 cli
当用户提交一些机器学习任务时,往往需要大规模的计算资源,但是对于响应时间并没有严格的要求。在这种场景下,首先使用腾讯云的batch-compute(批量计算)产品来自动化提交用户的任务,然后使用分布式+gpu的方式解决算力问题,在任务完成后通知用户,是一个可行的解决方案。 本文将分成2部分:首先通过一个demo介绍上述过程的实现,从仅使用gpu、不考虑并行的简单情况开始,扩展至并行+gpu的情况,并简要介绍batch-compute的使用方法;然后介绍一些技术的实现原理(部分资料来源于知乎和博客,仅供参考
当用户提交一些机器学习任务时,往往需要大规模的计算资源,但是对于响应时间并没有严格的要求。在这种场景下,首先使用腾讯云的batch-compute(批量计算)产品来自动化提交用户的任务,然后使用分布式+gpu的方式解决算力问题,在任务完成后通知用户,是一个可行的解决方案。
本文由微众银行数据库负责人胡盼盼撰写,介绍了微众银行自 2014 年以来从传统 RDBMS 到 NewSQL 的架构演进,以及 TiDB 在微众银行核心批量场景的应用。
领取专属 10元无门槛券
手把手带您无忧上云