本文是学习github5.com 网站的报告而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们
还记得前些天风靡网络的FaceApp吗,它是利用AI算法的自拍应用,把人们上传的照片中的人脸变年轻或者老化。
虹膜是位于人眼表面黑色瞳孔和白色巩膜之间的环状区域,在红外光下呈现出丰富的纹理信息,如斑点、条纹、细丝、冠状、隐窝等细节特征。虹膜识别技术采用专用光学图像采集仪采集人眼虹膜图像,然后通过数字图像处理技术、模式识别和人工智能技术对采集到的虹膜图像进行处理、存储、比对,实现对人员身份的认证和识别。在众多的生物特征识别技术中,虹膜识别因为其超群的唯一性、稳定性和非侵犯性而具有特殊的优势。近年来,虹膜识别得到了来自学术界、产业界、政府和军队等的广泛关注。 指纹是人类手指末端指腹表皮上凹凸不平的纹
在人脸识别技术正在被广泛运用的今天,人脸攻击技术不断进化,攻击类型也在逐步增加,给人脸安全技术带来了诸多挑战,我们应该如何应对?
最近,韩国人工智能公司Pulse 9推出了一个完全由AI打造的韩国流行音乐女团,Eternity。Pulse 9通过该公司研发的“Deep Real”技术打造了11位AI女团成员,并发布了单曲MV“I’m Real”。该单曲在YouTube上的播放量达到67万。
目前用于人类生成相关的「可动画3D感知GAN」方法主要集中在头部或全身的生成,不过仅有头部的视频在真实生活中并不常见,全身生成任务通常不会控制人物的面部表情,并且很难提高生成质量。
12 月初,美国著名图片博客网站 Tumblr 宣布将全面禁止任何成人内容。新规定将于 12 月 17 日正式施行。这一行为看来是主动在和「互联网的 30% 流量」说再见,长久混迹 Tumblr 的老司机们送了一首「凉凉」予它。
基于深度学习的人脸识别基本上分为两步完成,第一步是人脸检测与对齐;第二步是人脸特征提取与比对;在第一步中人脸检测与landmark检测,实现人脸对齐,对齐又分为2D/3D对齐;第二步中提取人脸特征数据,从128维到024维都有可能,获取特征之后识别分为两种模型,一种是1:1称为验证,另外一种1:N称为鉴别。整个流程图示如下:
1、A Novel Method to Compensate Variety of Illumination In Face Detection
“蚂蚁呀嘿,蚂蚁呀呼,蚂蚁呀哈,蚂蚁呀哈哈......”过去一周,在微信朋友圈、微博、抖音等社交媒体平台,相信不少人都被这个魔性的音乐配合着夸张扭动的变脸视频刷屏了。
一是杭州野生动物世界“为了方便消费者快速入园”,在今年 10 月将年卡系统从“指纹入园”升级为“人脸识别入园”,被消费者起诉。起诉者是浙江理工大学特聘副教授郭兵,他在五个月前办理了年卡,郭兵认为,“园区升级后的年卡系统进行人脸识别将收集他的面部特征等个人生物识别信息,该类信息属于个人敏感信息,一旦泄露、非法提供或者滥用,将极易危害包括原告在内的消费者人身和财产安全。”
2017年12月,一位名为“Deepfakes”的用户在全球流量排名第四的国际互联网社区“Reddit”上发布了一段好莱坞女星盖尔·加朵的伪造人脸视频,掀起了一阵轰动,这一事件作为开端,标志着人脸深度伪造技术的兴起,而该用户的用户名也被引用成为了这一类技术的代名词“Deepfake[1]”。 因此,Deepfake指代人脸的深度伪造,即将目标视频人物的脸替换成指定的原始视频人脸,或让目标人脸重演、模仿原始人脸的动作、表情等,从而制作出目标人脸的伪造视频。
导读:近日,浙江理工大学特聘副教授郭兵起诉杭州野生动物世界年卡系统采集人脸,已被杭州市富阳区人民法院正式受理。此案被称为“国内人脸识别第一案”。一直被忽视的互联网隐私终于被慢慢地重视起来。
近日社交网络上爆红的一款换脸应用,让许多普通用户体验到了跟爱豆同框、与偶像飙戏的快乐,也因数据使用带来的问题陷入了舆论的漩涡——除了用户隐私保障,如何辨别和处理换脸应用所制造的合成照片、合成视频是新型科技产品带来的新挑战。
2014年Ian Goodfellow首次提出Generative adversarial networks (生成对抗网络)简称GANs,生成对抗网络就开始在计算机视觉领域得到广泛应用,成为对有用的视觉任务网络之一,也是如今计算机视觉热点研究领域之一,其已经出现的应用领域与方向如下:
曾造出无数“小视频”、恶搞过多位明星的知名换脸神器Deepfakes,这下被降维打击了。
机器之心专栏 人民中科、中科院自动化所国家模式识别实验室 来自人民中科与中科院自动化所国家模式识别实验室的研究团队,提出了一种基于身份空间约束的伪造人脸检测新方法,该方法具有较好的泛化性与兼容性。 随着深度学习等技术的发展,机器自动生成内容的水平不断提高;其中深度伪造(Deepfakes)更是内容生产中的热门技术,在短视频、直播、视频会议、游戏、广告、军事等领域已得到了广泛应用。但具备高度欺骗性的深度伪造技术也引发了诸多争议,它进一步混淆了数字世界与真实世界边界,带来了相应的风险和挑战。 深度伪造技术的兴起
Google AI和乔治亚理工学院的研究人员发布了一个学习GAN的交互式网站:GAN Lab!由TensorFlow.js 驱动,在浏览器就可以运行GAN,非常直观地了解各种GAN模型的机制,可谓是一大神器。发布后迅速获得好评。
拿到神笔的马良,可以画物品、画动物、画食物,而且,这些画作都可以一秒钟从画面上出来,变成真实世界中存在的东西。
内容一览:深度合成服务在满足用户需求、改进用户体验的同时,也被一些不法人员用于制作、复制、发布、传播违法信息,诋毁、贬损他人名誉、荣誉,仿冒他人身份实施诈骗等违法行为,如今针对这一技术的管理规定终于发布了。
随着大数据时代的到来,个人信息安全问题日益严峻,基于图像处理的人脸识别和检测技术得到了广泛的应用。然而,目前人脸检测技术都是针对数量较小的人脸图像,随着大数据概念的深入,图像大数据处理将对人脸识别技术提出更高要求。在最原始的基于人脸识别系统中,基于当前拍摄的人脸照片与预先存储的人脸照片之间的比对,来进行身份验证。然而,当将被仿冒者本人的照片置于这种基于人脸照片比对的身份验证系统中的摄像头前时,这种基于人脸照片比对的身份验证系统可能通过用户身份验证。换言之,恶意用户可以使用被仿冒者的照片来进行恶意攻击(即,照片攻击),这种基于人脸照片比对的人脸识别系统不能抵抗照片攻击。于是,人脸活体检测技术应运而生。
前段时间和第三方人脸识别供应商对接,写了一个demo,主要功能是人脸识别准确率,增加底库,删除底库,人脸比对等等。让我对人脸识别有了一个新的意识。后来公司需要做个人脸识别的一些应用场景,根据这些场景,看看哪些符合公司的需要。于是自己规划了下。
什么?方案里没有人脸识别,看来你们的方案还是老旧的方案。上面就是客户给你的方案汇报一个总结。是不是很委屈,是不是很郁闷,你是不是想说,我们也不是人脸识别企业,为什么要懂这么多啊。
随着以深度学习为代表的人工智能技术的成熟,国内众多行业都在利用人工智能推进行业变革与创新,积极探寻有效、有价值的应用场景进行商业化落地,其中尤以安防行业表现最为活跃。
机器之心原创 作者:Liao 参与:Joni、Nurhachu、黄小天 近日,加利福尼亚大学和 Adobe Research 在 arXiv 上联合发表了一篇名为《生成人脸修复(Generative
本篇文章主要说一说windows系统中身份鉴别控制点中相关测评项的相关内容和理解,a、b测评项都比较基础和简单(但很繁琐),而c、d测评项则涉及到一点点密码方面的知识。
人脸识别成了近年火热的人工智能落地方向之一。简单地看来,人脸识别是一个验证身份的过程,所以后跟个人身份证打通也是理所应当。要判断画面上呈现的是不是一个真的人脸,途径和手段是可以非常多样化的。要验证是不是真正的人脸,光靠一个二维的模式识别,或者人脸特征点的对齐都是远远不够的,存在一定的局限性。
大数据文摘记者谭婧、魏子敏 安防已经成为人工智能落地场景中的重要赛道,其涉及的智能视频分析、人脸识别等关键技术也在研究领域受到了极大的关注。那么安防领域中涉及的人脸识别有何痛点?人工智能+安防的未来又有哪些新的趋势? 10月29日,2017年第十六届中国国际公共安全博览会(CPSE安博会)在中国深圳会展中心开幕。在政府管理论坛上,清华大学媒体大数据认知计算研究中心主任王生进教授发表了题为《人像态势识别及其在智能视频监控中的应用》的演讲,他指出,目前我国视频监控建设卓有成效,摄像头的数量惊人,达到了2000多
机器之心报道 编辑:杜伟、陈萍 一张输入人脸图像,竟能生成多样化风格的动漫形象。伊利诺伊大学香槟分校的研究者做到了,他们提出的全新 GAN 迁移方法实现了「一对多」的生成效果。 在 GAN 迁移领域,研究人员可以构建一个以人脸图像为输入并输出人脸动漫形象的映射。相关的研究方法已经出现了很多,如腾讯微视此前推出的迪士尼童话脸特效等等。 在迁移过程中,图像的内容(content)部分可能会被保留,但风格(style)部分必须改变,这是因为同一张脸在动画中能以多种不同的方式表示。这意味着:迁移过程是一个一对多的映
夏乙 安妮 编译整理 量子位 出品 | 公众号 QbitAI 输入一张语义地图—— 就能为你还原整个世界。 输入一张亲妈都认不出来的语义标注图—— 为你合成一张真实的人脸。 聪明的你可能已经发现,这个
机器之心分析师网络 作者:Jiying 编辑:Joni 这篇文章围绕机器学习(ML)和功能性磁共振成像(fMRI)的应用问题,以三篇最新的研究型论文为基础,探讨基于统计学中 ML 的 fMRI 分析方法。 本文主要讨论的是机器学习(ML)和功能性磁共振成像(fMRI)的应用问题。fMRI 主要用来检测人在进行各种脑神经活动时(包括运动、语言、记忆、认知、情感、听觉、视觉和触觉等)脑部皮层的磁力共振讯号变化,配合在人脑皮层中枢功能区定位,就可研究人脑思维进行的轨迹,揭示人脑奥秘。其基本原理是利用 MRI 来
许多人当听到“人工智能”、“机器学习”或者“bot”的时候,首先浮现在脑海当中的应当是科幻片中经常出现、未来感十足的既会走路又会说话的机器人。
自20世纪下半叶,计算机视觉技术逐渐地发展壮大。同时,伴随着数字图像相关的软硬件技术在人们生活中的广泛使用,数字图像已经成为当代社会信息来源的重要构成因素,各种图像处理与分析的需求和应用也不断促使该技术的革新。计算机视觉技术的应用十分广泛。数字图像检索管理、医学影像分析、智能安检、人机交互等领域都有计算机视觉技术的涉足。该技术是人工智能技术的重要组成部分,也是当今计算机科学研究的前沿领域。经过近年的不断发展,已逐步形成一套以数字信号处理技术。计算机图形图像、信息论和语义学相互结合的综合性技术,并具有较强的边缘性和学科交叉性。其中,人脸检测与识别当前图像处理、模式识别和计算机视觉内的一个热门研究课题, 也是目前生物特征识别中最受人们关注的一个分支。
AI 成为新基建风口模式下的一个重要选题,让人们对于 AI 的热情空前高涨。从一开始的烧钱阶段到今天的确定性发展,AI 一直渗透着人们的生活,从自动驾驶到人脸识别都是如此。其中,人脸识别技术应用较为广泛。
2013年,苹果机iphone5S让指纹识别在手机上普及,它告诉各大手机厂商,指纹可以这么玩。同样苹果它也让指纹识别从手机上消失。譬如,今年苹果就推出了支持面部识别的iPhone X,而这款产品不仅带来了黑科技,也让解锁技术得到进一步的变革。当然,更值得一提的是,iPhone X的面部识别技术现在也已成为Android手机厂商所追求的潮流风向。 那老派今天就跟大家讲讲身份识别的几大类型。 1.指纹识别 指纹识别即指通过比较不同指纹的细节特征点来进行鉴别。指纹识别技术涉及图像处理、模式识别、计算机视觉、数学形
外国小哥Nathan Shipley使用卡通图像微调StyleGAN2和FFHQ 脸部模型(英伟达的模型可以制作出不存在的逼真人物) ,将这些真人视频转换成卡通版本。
智能视频分析识别监管系统在安全管理中起着安全管家的功效,大幅提高了公司在生产安全管理里的安全指标。AI视频个人行为分析系统借助视频优化算法分析视频具体内容,根据获取视频里的关键信息、标识,产生相对应的警报时间和警报监管方式,大家能通过各种各样的方式迅速收到异常信息。AI依靠Cpu强劲的测算作用,视频个人行为分析系统快速分析视频界面里的海量信息,获得大家想要的违规警报信息内容。
随着AI技术的发展,越来越多的AI技术应用进入了我们的生活,而人脸识别也成为了最常见的技术应用之一,住酒店、坐飞机高铁、使用政务便民服务等场景中,都可以见到人脸识别的应用。 然而,在新技术带来方便的同时,安全风险也随之而来,不法分子开始利用AI深度伪造技术伪造视频进行传播,扰乱社会秩序;一些地方出现利用伪造视频、假体面具等攻击人脸识别技术的案例。 为把握当前世界网络传播与新技术融合发展方向,积极营造网信产业发展的良好环境,推动人脸识别等新技术在互联网信息行业发展和治理方面的应用,腾讯联合中国人工智能产业
在人脸识别应用中,很多场景能够获取某一个体的多幅人脸图像的集合(比如在监控视频中),使用人脸图像集来做识别,这个问题被称为基于模板的人脸识别(template-based face recognition)。
视频ai智能分析边缘计算盒可以配备为在施工工地现场监测到违规事件时开启即时警报,并伴随時间的变化收集数据,将其展示为历史时间数据图表、图型或热点图。视频ai智能分析边缘计算盒与传统的的视频监管方式对比,传统式的视频监管方式 通常必须手动式分析很多的视频流,视频ai智能分析边缘计算盒可以协助工作员在必须付诸行动时过虑有关事情并发送报警。
本文介绍了一种从语义图像生成逼真图像的方法,该方法基于Pix2Pix,并进行了改进。首先,使用条件生成对抗网络(cGAN)生成逼真的图像,然后使用多尺度鉴别器来提高生成图像的质量。最后,引入了实例级条件,在生成图像时为每个像素赋予一组实例条件,以使生成的图像更加真实。
格雷内尔对微软宣布停止向警方出售面部识别技术的新闻发表评论,称应该禁止微软签订和联邦政府的业务合同,并表示既然微软公开表明了立场,就要承担这样做的后果。
本文介绍了多传感器融合的最新研究进展,主要关注激光雷达、毫米波雷达和摄像头等传感器在自动驾驶汽车中的应用。作者对比了每种传感器的优缺点,并讨论了不同传感器融合的方法,如使用卡尔曼滤波器、粒子滤波器和基于深度学习的融合方法。文章还讨论了融合方法在实际应用中可能遇到的问题,如传感器故障和不同传感器之间的校准。最后,作者提出了多传感器融合的未来研究方向,包括使用更先进的传感器和融合方法,以及研究如何从大量数据中提取有用信息等。
大数据文摘作品 作者:龙牧雪 深度学习合成图像并不是什么新鲜事。谷歌自己就做过SketchRNN,能识别8条腿的猪有异常,输出4条腿的猪(戳这里看)。 不过这些都依赖于人类输入数据的指导。人类需要告诉模型,哪些输入图片是猪,模型才能从中总结规律。 昨天,谷歌DeepMind发出了一篇博文,介绍了其最新论文Synthesizing Programs for Images using Reinforced Adversarial Learning(大数据文摘公众号后台回复“图像”即可下载)。 谷歌使用一种名叫
领取专属 10元无门槛券
手把手带您无忧上云