作者简介:刘韬,在中间件领域有多年的实战经验,精通 WebLogic server,Websphere,Jboss,Tomcat,tuxedo,mq,osb等多种中间件技术,对中间件的故障处理、性能优化、升级迁移等需求积累了丰富经验。
秒杀是电商业务里的标志性事件,这样的典型高并发场景会遇见什么样的挑战呢,然后又是如何来解决的呢? 秒杀活动场景 淘宝双11秒杀场景,大量的用户短时间内涌入,瞬间流量巨大(高并发),比如:1000万人同
关于Redis的其他的一些面试问题已经写过了,比如常见的缓存穿透、雪崩、击穿、热点的问题,但是还有一个比较麻烦的问题就是如何保证缓存一致性。
在今天双 11 这个万众狂欢的节日,对于阿里员工来说,每个环节都将面临前所未有的考验,特别是技术环节,今天我们就一起来探讨下双11天量交易额背后的技术。
每年“双11”都是一场电商盛会,消费者狂欢日。今年双11的意义尤为重大,它已经发展成为全世界电商和消费者都参与进来的盛宴。而对技术人员来说,双十一无疑已经成为一场大考,考量的角度是整体架构、基础中间件、运维工具、人员等。
作者简介 荣华,携程高级研发经理,专注于后端技术项目研发管理。 军威,携程软件技术专家,负责分布式缓存系统开发 & 存储架构迁移项目。 金永,携程资深软件工程师,专注于实时计算,数据分析工程。 俊强,携程高级后端开发工程师,拥有丰富SQLServer使用经验。 前言 携程酒店订单系统的存储设计从1999年收录第一单以来,已经完成了从单一SQLServer数据库到多IDC容灾、完成分库分表等多个阶段,在见证了大量业务奇迹的同时,也开始逐渐暴露出老骥伏枥的心有余而力不足之态。基于更高稳定性与高效成本控制而设计
消息队列是一种中间件,它的作用类似于一个电子邮箱。在这个模型中,生产者(应用程序)生成消息,就像发送邮件一样,而消费者(另一个应用程序)则接收这些消息。消息队列确保消息能够可靠地从生产者传递到消费者,而无需两者之间直接交互。
当系统访问量和数据量超过之前对评估预期时,涉及到对数据库重新分片。大部分场景中往往不能直接映射到新对数据分片策略中,分片策略修改需要伴随数据迁移。
本文整理了阿里13个开源中件间产品的架构及功能介绍,结合阿里中间件团队的访谈及分享,涵盖了消息中间件、服务框架、数据层、应用服务器和大规模分布式稳定性平台等等。整体中间件在阿里生态中的分布,如下图所示:
参考博客1给出了一种所谓的平滑帅气的秒级扩容的架构方案,但我个人却认为,这个看似没有什么问题的方案在实际中几乎没什么用处,业界也几乎不会用这种方案来进行扩容(分库分表)。为了便于说明这一点,本文先简单回顾下该方案,然后分析该方案为什么没有用,最后给出三种业界广泛使用的分库分表的平滑扩容方案。
大家想一想在你们平时开发的系统里面有没有这种情况,就是你们系统会调用到第三方接口服务,而且这个接口服务是在你流程里面进行同步调用的,这个时候你们的系统性能是直接和第三方接口服务挂钩的,也就是第三方接口服务性能的好坏直接影响到你自己的系统。
面对一个庞然大物,如果没有一个合理的分工分层。任何一个小小失误都会被无限放大,酿成巨大灾难。
今天准备谈下微服务架构下各个微服务间如何解耦,以及对于已经紧耦合的微服务如何进行重构。在谈这个内容前,可以先看下我前两天发布的微服务模块和粒度如何划分才更加合理的一篇文章,这篇文章对于微服务拆分有比较详细的描述。
2022年,基于对稳定性的焦虑...和思考,交易平台联动中间件平台启动过异地多活项目的探索,虽然完成了核心应用及基础组件的改造,但在疫情&降本增效的影响下并未真正投产,同时也缺乏充分的测试以及线上流量的大规模验证;后续在不断的业务迭代中,相关设计及代码被冲击的面目全非,相关的多活自动化测试case也并没有沉淀下来。
“秒杀”系统的建设需要整个系统从前到后全栈的协同配合,其中包含了基础技术部维护的多个服务,比如CDN、高防IP、容器平台、缓存、数据库、中间件、全链路压测、监控系统等,我们围绕这些基础服务讨论秒杀系统的技术挑战与架构优化。
内容来源:2017 年 12 月 3 日,苏宁易购技术总监禹立彬在“互联网架构峰会”进行《前后端分离架构的落地思考》演讲分享。IT 大咖说(微信id:itdakashuo)作为独家视频合作方,经主办方和讲者审阅授权发布。 阅读字数:2851 | 8分钟阅读 摘要 本次分享将为大家介绍前后端分离的存在意义以及典型业务场景,接下来会细致的介绍前后端分离的技术利弊,最后根据苏宁的经验来谈一谈渐进式前后端分离。 嘉宾演讲视频及PPT回顾:http://suo.im/4WlSl9 为什么要前后端分离 前后端分离本质上
也就是从 Greenwich.SR6, Hoxton.SR9 这样子的风格改为 2020.0.0。广大人民终于不用为spring cloud的版本号烦恼了。Spring Cloud推广不力,固然有自身复杂的原因,版本号太复杂也是一个坑。
我们以javaweb为例,来搭建一个简单的电商系统,看看这个系统可以如何一步步演变。
计 算机技术迅速发展。从硬件技术看,CPU速度越来越高,处理能力越来越强;从软件技术看,应用程序的规模不断扩大,特别是Internet及WWW的出 现,使计算机的应用范围更为广阔,许多应用程序需在网络环境的异构平台上运行。这一切都对新一代的软件开发提出了新的需求。在这种分布异构环境中,通常存 在多种硬件系统平台(如PC,工作站,小型机等),在这些硬件平台上又存在各种各样的系统软件(如不同的操作系统、数据库、语言编译器等),以及多种风格 各异的用户界面,这些硬件系统平台还可能采用不同的网络协议和网络体系结构连接。如何把这些系统集成起来并开发新的应用是一个非常现实而困难的问题。
1、构件定义:组(构)件是软件系统可替换的、物理的组成部分,它封装了实现体(实现某个职能)并提供了一组接口的实现方法。可以认为组件是一个封装的代码模块或大粒度的运行的模块,也可将组件理解为具有一定功能、能够独立工作或同其它组件组合起来协同工作的对象。
基于公司内部开源共建原则, RocketMQ 项目只维护核心功能,且去除了所有其他运行时依赖,核心功能最 简化。每个 BU 的个性化需求都在 RocketMQ 项目之上进行深度定制。RocketMQ 向其他 BU 提供的仅仅是Jar 包,例如要定制一个 Broker,那么只需要依赖 rocketmq-broker 这个 jar 包即可,可通过 API 进行交互,如果定制 client,则依赖 rocketmq-client 这个 jar 包,对其提供的 api 进行再封装。
1.Provider提供方:服务提供者。2.Producer生产者:创建和发送JMS消息的客户端。3.Consumer消费者:接收JMS消息的客户端。4.Client客户端:生产或消费消息的应用&进程。5.Message消息:服务端与客户端之间的传输数据对象。6.Queue队列 :包含待读取消息的准备区域(点对点)。7.Topic主题:发布消息的分布机制(发布&订阅)。
8月18日,云+社区开发者大会·杭州站「电商技术进化论:云与小程序之力」在杭州蘑菇街举办,此次大会邀请了业内技术大咖,深度揭秘新时代电商的技术变革与创新形式,与大家共探技术与产业转型背景下的电商如何成为时代引领者。
一项技术的产生必然是为了解决问题而生,了解了一项技术解决的问题,就能够很轻松的理解这项技术的设计根本,从而更好地理解与使用这项技术。 消息中间件和RPC从根本上来说都是为了解决分布式系统的服务间通信问题,我们的服务从最初的单体应用发展到SOA架构到现在的微服务架构,必不可少的就是服务间通信,但从最初的设想,服务间通信仅仅就是一次请求响应调用而已,为什么发展出如此多的消息中间件与RPC技术,我们是否真的需要学习这么多的消息中间件技术? 答案是肯定的,接下来我们将分析我们为什么要了解及使用如此多的服务间通信技术,以及他们究竟都解决了哪些问题,在什么场景下他们是必不可少的。
11月11日24:00,双11收官,一场超11天、268小时的全球快递“云监工”直播也落下了帷幕,这场“马拉松”直播一共被人民日报等全国70多家媒体转播,仅视频号和抖音号就吸引了超3000万人次围观,很多网友直呼做“云监工”时“快递小哥治好了我的精神内耗。”观摩跨越山海的包裹、看着勤劳奔波的快递小哥,盯着不知疲倦的智能仓机器人,欢乐且解压。
去年8月,国内某大型快递公司S为了应对双十一的快递系统高峰,想学习阿里用全链路压测的方法对系统进行提前检查、优化系统性能。
导读:余额宝开启了划时代的意义,开启了全民理财时代。上个月微博商业产品部联合天弘基金等金融技术团队策划了首届互联网金融系统沙龙,围绕在互联网金融过程中碰到技术架构问题与业界展开分享及交流。本文是陈雨在沙龙上的演讲,授权高可用架构首发。
作者 | 汪成坤 策划 | 褚杏娟 在泛敏捷思潮变革、DevOps 大行其道的背景下,小步快跑的模式极大程度压缩了质量保障活动的时间,传统的自动化测试工具已无法满足持续交付的需求。流量录制回放的概念近年来愈发火热,从业界大会到社区论坛,众多工程师进行了大量的思辩悟,肯定了 API 录制回放能有效地解决测试、研发工程师在质量活动中的核心痛点从而带来可观测的研发效能提升。 流量录制回放的核心价值是通过直接录制生产的高保真数据,快速地在测试环境中进行回放比对接口返回值和中间链路的验证。录制回放很热,行业
随着国际火车票业务的高速发展,订单量快速增长,单数据库瓶颈层面的问题逐渐显露,常规的数据库优化已无法达到期望的效果。同时,原先的底层数据库设计,也存在一些历史遗留问题,比如存在部分无用字段、表通过自增主键关联和各个应用直连数据库等问题。
(1)可用性设计 解决思路:复制+冗余 副作用:复制+冗余一定会引发一致性问题 保证“读”高可用的方法:复制从库,冗余数据,如下图 带来的问题:主从不一致 解决方案:见下文 保证“写”高可用的一般方法
11月11日,本来也就是文艺单身狗们发点牢骚,抒抒情的日子,可如今却变成了电商最惨烈的战场,这场起源于2009年的“品牌商的5折活动”,现如今已经成了一个“疯狂吸金”的强大商标,这一部双11的成长史,每一年都给我们一组新的惊人数字,博古才能通今,通观这些历年的双十一大数据,看看我们除了总结过去之外,还能不能预测一下未来。
对于分库分表来说,主要是面对以下问题: 选择一个数据库中间件,调研、学习、测试; 设计你的分库分表的一个方案,你要分成多少个库,每个库分成多少个表,比如 3 个库,每个库 4 个表; 基于选择好的数据库中间件,以及在测试环境建立好的分库分表的环境,然后测试一下能否正常进行分库分表的读写; 完成单库单表到分库分表的迁移,双写方案; 线上系统开始基于分库分表对外提供服务; 扩容了,扩容成 6 个库,每个库需要 12 个表,你怎么来增加更多库和表呢? 这个是你必须面对的一个事儿,就是你已经弄好分库分表方案了,然后一堆库和表都建好了,基于分库分表中间件的代码开发啥的都好了,测试都 ok 了,数据能均匀分布到各个库和各个表里去,而且接着你还通过双写的方案咔嚓一下上了系统,已经直接基于分库分表方案在搞了。 那么现在问题来了,你现在这些库和表又支撑不住了,要继续扩容咋办?这个可能就是说你的每个库的容量又快满了,或者是你的表数据量又太大了,也可能是你每个库的写并发太高了,你得继续扩容。这都是玩儿分库分表线上必须经历的事儿。
现在很多项目基本都是采用采用微服务分布式架构了,但是在分布式系统中,组件之间的通信通常面临诸多挑战,如网络延迟、故障恢复、负载均衡等。消息中间件作为一种关键的分布式组件,在解决这些问题方面具有重要价值。本文将介绍消息中间件在分布式系统中的作用,以及它在解耦、异步调用、流量削锋和柔性事务方面的应用。
分布式数据库系统通常使用较小的计算机系统,每台计算机可单独放在一个地方,每台计算机中都可能有DBMS的一份完整拷贝副本,或者部分拷贝副本,并具有自己局部的数据库,位于不同地点的许多计算机通过网络互相连接,共同组成一个完整的、全局的逻辑上集中、物理上分布的大型数据库。余军讲师为你讲解分布式数据库在金融行业的创新实践。 余军 PingCAP 高级技术总监,金融行业首席架构师;开源软件的忠实爱好者,负责金融行业基于 TiDB 产品的解决方案、产品架构咨询和建设规划。主要工作经历:富麦信息科技有限公司 CTO ,中
在说“业务中间件”之前先解释下什么是“中间件”,通常来说中间件是特指计算机系统中将底层逻辑屏蔽,并收敛某些通用功能构建出来的软件服务。目的是用来解耦底层实现细节,更简单的进行上层业务功能开发,比如常用的redis、levelDB、kafka、rpc 本质上都属于技术中间件的范畴。 而业务中间件理我们也并不远,也是类似的思想,抽离相对通用的业务功能部分并集成特定技术,解决业务开发的复杂性等痛点问题。 举个例子来说:
相对于过去单体或 SOA 架构,建设微服务架构所依赖的组件发生了改变,因此分析与设计高可用容灾架构方案的思路也随之改变,本文对微服务架构落地过程中的几种常见容灾高可用方案展开分析。
实时计算的输出内容,以及提供的分析能力:OLAP 分析,key-value 实时数据服务,维度填充,数据打标等。
系统间的通讯方式一般可分为同步通信和异步通信两种,我们可以将将同步通讯理解为打电话,需要实时响应,而异步通信则可理解为发送短信,不需要马上回复。我们往往会在面对超高吐吞量的场景下采取异步通讯,因为这就好比一个人不可能同时接打很多电话,但是他可以同时接收很多的电子邮件一样。
自2018年以来,受“华为、中兴事件”影响,我国科技受制于人的现状对国家稳定和经济发展都提出了严峻考验。目前我国IT架构体系严重依赖国外产品,金融行业尤其明显。大部分传统银行的关键账务系统都架设在IBM的大型机、小型机之上,数据库使用Oracle及DB2,存储采用EMC。在美国不断加大对我国技术封锁背景下,银行IT产业自主可控的必要性和紧迫性凸显。
现在很多并发性很高的系统为了提高吞吐量而使用redis来当数据存储,而当redis挂了的时候有可能数据丢失,这个时候系统可能不可用,而把流量路由到db肯定是不可行的,因为流量太大,这个时候恢复redis中的数据又比较耗时,而这个时候经常会出现使用多个reids集群,即有一个或者多个备份redis集群。这个时候怎么保证多个redis集群数据一致性呢?
大家好,我是若川,最近组织了源码共读活动《1个月,200+人,一起读了4周源码》,感兴趣的可以加我微信 ruochuan12 参与,长期交流学习。
点击上方“芋道源码”,选择“设为星标” 管她前浪,还是后浪? 能浪的浪,才是好浪! 每天 10:33 更新文章,每天掉亿点点头发... 源码精品专栏 原创 | Java 2021 超神之路,很肝~ 中文详细注释的开源项目 RPC 框架 Dubbo 源码解析 网络应用框架 Netty 源码解析 消息中间件 RocketMQ 源码解析 数据库中间件 Sharding-JDBC 和 MyCAT 源码解析 作业调度中间件 Elastic-Job 源码解析 分布式事务中间件 TCC-Transaction
Mysql优化那篇文章有朋友留言说就这么点?,深深刺痛了晓添的心,感觉知识深度被小看了,痛定思痛决定发布读写分离,分表分库优化文章,其实这系列文章也在Mysql优化的计划之内,最近较忙断断续续写的有点难受,到今天才跟大家见面,篇幅有限这篇我们来说说基于Mycat实现读写分离,话不多说我们赶紧看看好好的数据库又闹腾什么呢?
导语 近几年,大型公有云故障引发的生产业务事故案例时有发生。由于很多开发者默认大型公有云的服务是一直可用的,在开发时没有针对公有云服务进行容错设计,在公有云故障时,就出现了业务的异常。可见,由于大型公有云实际上已经成为了全社会共同拥有的IT基础设施,其业务的高可用也已经成为了企业社会责任的一部分。腾讯云是如何通过完备的高可用设计,来保证云服务的业务连续性和数据持久性,从而承担大厂应有的社会责任的呢? 这篇来自腾讯专有云的架构师方天戟的万字长文为您揭开腾讯专有云高可用设计的内幕。 一. IT 业务高可用的
不要惊讶,写这篇文章前,我特意去网上看了下分库分表的文章,很神奇的是,都在讲怎么进行分库分表,却不说分完以后,怎么部署上线的。这样在面试的时候就比较尴尬了。
原创 官网商城开发团队 [vivo互联网技术](javascript:void(0)😉 1周前 收录于话题 #架构设计 16 #vivo商城 7 一、背景 随着用户量级的快速增长,vivo 官方商城 v1.0 的单体架构逐渐暴露出弊端:模块愈发臃肿、开发效率低下、性能出现瓶颈、系统维护困难。 从2017年开始启动的 v2.0 架构升级,基于业务模块进行垂直的系统物理拆分,拆分出来业务线各司其职,提供服务化的能力,共同支撑主站业务。 订单模块是电商系统的交易核心,不断累积的数据即将达到单表存储瓶颈,系统难以支
每年“双 11”都是一场电商盛会,消费者狂欢日。今年双 11 的意义尤为重大,它已经发展成为全世界电商和消费者都参与进来的盛宴。而对技术人员来说,双十一无疑已经成为一场大考,考量的角度是整体架构、基础中间件、运维工具、人员等。
在软件开发领域,异地多活是分布式系统架构设计的一座高峰,很多人经常听到过他,但很少人理解其中的原理;
领取专属 10元无门槛券
手把手带您无忧上云