作者简介:刘韬,在中间件领域有多年的实战经验,精通 WebLogic server,Websphere,Jboss,Tomcat,tuxedo,mq,osb等多种中间件技术,对中间件的故障处理、性能优化、升级迁移等需求积累了丰富经验。
这前段时间有一件“格力举报奥克斯空调质量"的事情,当时看一下京东这两家店铺,感觉很有意思,看着就觉得奥克斯空调选购指
作者简介 荣华,携程高级研发经理,专注于后端技术项目研发管理。 军威,携程软件技术专家,负责分布式缓存系统开发 & 存储架构迁移项目。 金永,携程资深软件工程师,专注于实时计算,数据分析工程。 俊强,携程高级后端开发工程师,拥有丰富SQLServer使用经验。 前言 携程酒店订单系统的存储设计从1999年收录第一单以来,已经完成了从单一SQLServer数据库到多IDC容灾、完成分库分表等多个阶段,在见证了大量业务奇迹的同时,也开始逐渐暴露出老骥伏枥的心有余而力不足之态。基于更高稳定性与高效成本控制而设计
当系统访问量和数据量超过之前对评估预期时,涉及到对数据库重新分片。大部分场景中往往不能直接映射到新对数据分片策略中,分片策略修改需要伴随数据迁移。
内存是计算机中最重要的部件,它是计算机中的一个中间件。解决了CPU和硬盘之间速度严重不对等的问题,是CPU和硬盘数据交互的桥梁。默认情况下,CPU从内存读写数据,内存从硬盘读写数据。为了提升效率,一般在开机或者软件在运行的时候,会将常用数据直接从硬盘直接读入内存,以待后续CPU使用,提高计算机运行效率。
参考博客1给出了一种所谓的平滑帅气的秒级扩容的架构方案,但我个人却认为,这个看似没有什么问题的方案在实际中几乎没什么用处,业界也几乎不会用这种方案来进行扩容(分库分表)。为了便于说明这一点,本文先简单回顾下该方案,然后分析该方案为什么没有用,最后给出三种业界广泛使用的分库分表的平滑扩容方案。
本文整理了阿里13个开源中件间产品的架构及功能介绍,结合阿里中间件团队的访谈及分享,涵盖了消息中间件、服务框架、数据层、应用服务器和大规模分布式稳定性平台等等。整体中间件在阿里生态中的分布,如下图所示:
2022年,基于对稳定性的焦虑...和思考,交易平台联动中间件平台启动过异地多活项目的探索,虽然完成了核心应用及基础组件的改造,但在疫情&降本增效的影响下并未真正投产,同时也缺乏充分的测试以及线上流量的大规模验证;后续在不断的业务迭代中,相关设计及代码被冲击的面目全非,相关的多活自动化测试case也并没有沉淀下来。
经常遇到一些朋友问我,现在要学什么技术,用怎样的路线来学习。我的建议是无论你现在学什么都是会过时的,所以不如学一些工作中用的着的技术。比如linux命令、intelij快捷键,工作中用spring就学spring。就这样。不用什么高大上学什么。而是实践出真知。通过学习和实践增加自己知识的深度,建立自己的知识网。
也就是从 Greenwich.SR6, Hoxton.SR9 这样子的风格改为 2020.0.0。广大人民终于不用为spring cloud的版本号烦恼了。Spring Cloud推广不力,固然有自身复杂的原因,版本号太复杂也是一个坑。
基于公司内部开源共建原则, RocketMQ 项目只维护核心功能,且去除了所有其他运行时依赖,核心功能最 简化。每个 BU 的个性化需求都在 RocketMQ 项目之上进行深度定制。RocketMQ 向其他 BU 提供的仅仅是Jar 包,例如要定制一个 Broker,那么只需要依赖 rocketmq-broker 这个 jar 包即可,可通过 API 进行交互,如果定制 client,则依赖 rocketmq-client 这个 jar 包,对其提供的 api 进行再封装。
1.Provider提供方:服务提供者。2.Producer生产者:创建和发送JMS消息的客户端。3.Consumer消费者:接收JMS消息的客户端。4.Client客户端:生产或消费消息的应用&进程。5.Message消息:服务端与客户端之间的传输数据对象。6.Queue队列 :包含待读取消息的准备区域(点对点)。7.Topic主题:发布消息的分布机制(发布&订阅)。
秒杀是电商业务里的标志性事件,这样的典型高并发场景会遇见什么样的挑战呢,然后又是如何来解决的呢? 秒杀活动场景 淘宝双11秒杀场景,大量的用户短时间内涌入,瞬间流量巨大(高并发),比如:1000万人同
在今天双 11 这个万众狂欢的节日,对于阿里员工来说,每个环节都将面临前所未有的考验,特别是技术环节,今天我们就一起来探讨下双11天量交易额背后的技术。
对于分库分表来说,主要是面对以下问题: 选择一个数据库中间件,调研、学习、测试; 设计你的分库分表的一个方案,你要分成多少个库,每个库分成多少个表,比如 3 个库,每个库 4 个表; 基于选择好的数据库中间件,以及在测试环境建立好的分库分表的环境,然后测试一下能否正常进行分库分表的读写; 完成单库单表到分库分表的迁移,双写方案; 线上系统开始基于分库分表对外提供服务; 扩容了,扩容成 6 个库,每个库需要 12 个表,你怎么来增加更多库和表呢? 这个是你必须面对的一个事儿,就是你已经弄好分库分表方案了,然后一堆库和表都建好了,基于分库分表中间件的代码开发啥的都好了,测试都 ok 了,数据能均匀分布到各个库和各个表里去,而且接着你还通过双写的方案咔嚓一下上了系统,已经直接基于分库分表方案在搞了。 那么现在问题来了,你现在这些库和表又支撑不住了,要继续扩容咋办?这个可能就是说你的每个库的容量又快满了,或者是你的表数据量又太大了,也可能是你每个库的写并发太高了,你得继续扩容。这都是玩儿分库分表线上必须经历的事儿。
相对于过去单体或 SOA 架构,建设微服务架构所依赖的组件发生了改变,因此分析与设计高可用容灾架构方案的思路也随之改变,本文对微服务架构落地过程中的几种常见容灾高可用方案展开分析。
现在很多并发性很高的系统为了提高吞吐量而使用redis来当数据存储,而当redis挂了的时候有可能数据丢失,这个时候系统可能不可用,而把流量路由到db肯定是不可行的,因为流量太大,这个时候恢复redis中的数据又比较耗时,而这个时候经常会出现使用多个reids集群,即有一个或者多个备份redis集群。这个时候怎么保证多个redis集群数据一致性呢?
点击上方“芋道源码”,选择“设为星标” 管她前浪,还是后浪? 能浪的浪,才是好浪! 每天 10:33 更新文章,每天掉亿点点头发... 源码精品专栏 原创 | Java 2021 超神之路,很肝~ 中文详细注释的开源项目 RPC 框架 Dubbo 源码解析 网络应用框架 Netty 源码解析 消息中间件 RocketMQ 源码解析 数据库中间件 Sharding-JDBC 和 MyCAT 源码解析 作业调度中间件 Elastic-Job 源码解析 分布式事务中间件 TCC-Transaction
Mysql优化那篇文章有朋友留言说就这么点?,深深刺痛了晓添的心,感觉知识深度被小看了,痛定思痛决定发布读写分离,分表分库优化文章,其实这系列文章也在Mysql优化的计划之内,最近较忙断断续续写的有点难受,到今天才跟大家见面,篇幅有限这篇我们来说说基于Mycat实现读写分离,话不多说我们赶紧看看好好的数据库又闹腾什么呢?
导语 近几年,大型公有云故障引发的生产业务事故案例时有发生。由于很多开发者默认大型公有云的服务是一直可用的,在开发时没有针对公有云服务进行容错设计,在公有云故障时,就出现了业务的异常。可见,由于大型公有云实际上已经成为了全社会共同拥有的IT基础设施,其业务的高可用也已经成为了企业社会责任的一部分。腾讯云是如何通过完备的高可用设计,来保证云服务的业务连续性和数据持久性,从而承担大厂应有的社会责任的呢? 这篇来自腾讯专有云的架构师方天戟的万字长文为您揭开腾讯专有云高可用设计的内幕。 一. IT 业务高可用的
2014年年底,NVIDIA 再为加速运算平台增添最新旗舰级产品,宣布推出全新 Tesla K80 双 GPU 加速器,专为机器学习、资料分析、科学和高效能运算 (HPC) 等广泛应用而设,提供多 2 倍效能和存储器频宽。 全新 Tesla K80 双 GPU 加速器是 Tesla 加速运算系列的旗舰级产品,特别针对大型科学探索和深入分析的顶尖运算平台,结合最快的 GPU 加速器、 CUDA 平行运算以及完整的软件开发者、软件商和资料中心系统 OEM 的产业体系支援。 效能方面, Tesla K8
在软件开发领域,异地多活是分布式系统架构设计的一座高峰,很多人经常听到过他,但很少人理解其中的原理;
只要用缓存,就可能会涉及到缓存与数据库双存储双写,你只要是双写,就一定会有数据一致性的问题,那么你如何解决一致性问题?
从今年7月到现在转眼间转岗到淘宝部门已经有小半年了,最近刚刚经历人生中第一次双11实战,体验了一把系统经受高并发高流量的冲击的感觉,一个字爽,作为小白,在这小半年里面收获颇多,一个感悟是实战是提高一个人能力的唯一真理,只有真的动手去做了,才会知道会遇到什么问题。日常做项目时候不怕遇到问题如何解决,最怕有些情景考虑不到,而后者是需要经验累积起来的,一方面是试错的累积,一方面是通过书本或者思考源码得来的。来淘宝这半年来为了能够学到更多,从来不敢浪费时间,一边欣赏这人家如何用代码解决高并发高流量问题,一边学着人家如何用工具快速高效的查询系统瓶颈与查找线上问题。
一年一度的女王节降临,转眼又到了女王们纷纷拔草,各位男士表达爱意、宠爱自己女王的时候了。 可是,怎么才能挑选到物美价廉、心仪的商品呢? 今天,知晓程序(zxcx0101)就给各位女王和女王的男票,推荐 5 款实用的购物小程序。 1. 购物决策助手:选择困难症的剁手参考 女王们通常都有病,比如选择困难症……在购物时,常会陷入一种无法做决定的纠结彷徨中。 买哪一件,买哪一双?好像两件都很好看耶!两双都想买! 怎么办?要是不想对钱包造成冲动式伤害,请打开张大妈出品的「购物决策助手」小程序,做出正确的购物决策。
插座是家家户户日常生活中必须接触的电器之一,然而他对于普通用户却又是一个神秘的存在。就像看人一样,你能看到他的表面,却不知道它内心深处的花花肚肠。不够了解他,选购时候常常不知所措。什么样的品牌靠谱?什么样子的设计靠谱?阻燃吗?这是选购中常常会遇到的疑问。通常你有两个选择:1、相信装修公司选择,将宰割权利让给他们;2、自己购买。
1、大型网站技术架构:核心原理与案例分析 本书通过梳理大型网站技术发展历程,剖析大型网站技术架构模式,深入讲述大型互联网架构设计的核心原理,并通过一组典型网站技术架构设计案例,为读者呈现一幅包括技术选型、架构设计、性能优化、Web安全、系统发布、运维监控等在内的大型网站开发全景视图。 本书作者李智慧,曾在阿里巴巴担任技术专家,参与阿里巴巴基础技术平台开发和架构设计。 2、分布式服务框架原理与实践 微服务是当前非常热的技术关键词之一,那么微服务如何落地呢?首先要实现服务化,微服务架构是一种服务化架构风
本文由公众号“水滴与银弹”号主Kaito原创分享,原题“搞懂异地多活,看这篇就够了”,为使文章更好理解,有修订。
ROS具有很强的代码可复用性和硬件抽象性能,采用分布式架构,通过各功能独立的节点实现消息传递任务的分层次运行,从而减轻实时计算的压力。同时ROS为常用的机器人和传感器提供了硬件驱动接口。
进入十一月,最火热的话题与期待的日子自然是双十一狂欢购物节了,作为程序员的你除了要清空自己的购物车之外,最关心的是不是双十一架构技术是如何承受亿级用户流量的冲击,又是如何在分布式架构中实现单点登陆,形成支持高并发,高可用的分布式架构技术呢?下面小编就来帮你总结如何从0到1学习分布式架构技术,如何实现从小白到架构师的蜕变!!
在这些可选项中,最常见的就是基于主从复制的方案,其次是基于Galera的方案,我们重点说说这两种方案。其余几种方案在生产上用的并不多,我们只简单说下。
通过对中间件功能、架构以及关键能力的定期聚焦,暴露中间件存在的问题和风险,把控未来演进方向,呈现中间件现状和未来演进的清晰画像。
这是一个从诞生第一天起就在 GitHub 上开发的开源项目,也是中国第一个非 Hadoop 生态的 Apache 顶级项目。它统一了阿里集团内部所有业务线的消息中间件,伴随着中国互联网发展数次迭代。InfoQ 与阿里云开发者社区联合出品的【开源人说】系列视频第一期正式上线,一起来探访开源消息中间件 Apache RocketMQ 背后的人和事!
关于Redis的其他的一些面试问题已经写过了,比如常见的缓存穿透、雪崩、击穿、热点的问题,但是还有一个比较麻烦的问题就是如何保证缓存一致性。
缘起:受@萧田国 萧总邀请,上周五晚上在“高效运维1号群”内分享了《58同城数据库软件架构设计与实践》(这个topic今年在数据库大会上分享过),应组织方要求,发出纪要。 ---- 一、基本概念 二
在软件开发领域,「异地多活」是分布式系统架构设计的一座高峰,很多人经常听过它,但很少人理解其中的原理。
在我们编写web服务端程序的时候,我们可能会对一些甚至全部的Http Request统一处理,比如我们记录每个访问的Request,对提交的Form表单进行映射等,要达到这些目的,比较优雅的做法是Http 中间件。
自2018年以来,受“华为、中兴事件”影响,我国科技受制于人的现状对国家稳定和经济发展都提出了严峻考验。目前我国IT架构体系严重依赖国外产品,金融行业尤其明显。大部分传统银行的关键账务系统都架设在IBM的大型机、小型机之上,数据库使用Oracle及DB2,存储采用EMC。在美国不断加大对我国技术封锁背景下,银行IT产业自主可控的必要性和紧迫性凸显。
强烈推介IDEA2020.2破解激活,IntelliJ IDEA 注册码,2020.2 IDEA 激活码
最近线上有一套集群的存储存在瓶颈,导致经常会有报警,如果按照存储现状和稍后的假期的数据增长,很可能会带来一些意料之外的问题,所以整体评估后,决定对已有的集群先做在线扩容,待假期结束后再做缩容。
伴随着信息大爆炸和通讯技术的发展,“AIoT”俨然成为了当前科技和互联网领域的一个热门词汇,各大知名厂商纷纷表示自己要布局AIoT。到底什么是AIoT?AIoT到底有些什么优势呢?「腾讯云大学」联合「云加社区」为大家整理了大咖直播课《腾讯云 AIoT 解决方案》的回顾,看看腾讯云的IoT高级产品经理是如何理解AIoT的。
数据分片:https://shardingsphere.apache.org/document/current/cn/features/sharding/
随着国际火车票业务的高速发展,订单量快速增长,单数据库瓶颈层面的问题逐渐显露,常规的数据库优化已无法达到期望的效果。同时,原先的底层数据库设计,也存在一些历史遗留问题,比如存在部分无用字段、表通过自增主键关联和各个应用直连数据库等问题。
当单个数据库数据量达到一定程度后,我们可以采用多个从库解决读请求的系统瓶颈。 而写请求的系统瓶颈往往需要通过分库解决。
通配符证书是保护网站主域名及其无限子域名的最合适,也是最划算的SSL证书类型,因此成为很多公司和大型企业的保护多个子域名的最佳HTTPS解决方案。
7天前 - 云栖社区是面向开发者的开放型技术平台。源自阿里云,服务于云计算技术全生态。包含博客、问答、培训、设计研发、资源下载等产品,以分享专业、优质、高...
当你在网上选购商品时,同类的商品成千上万,哪些因素会影响你选购某件商品呢?商品评论一定是一个重要的参考吧。一般我们总会看看历史销量高不高,用户评论好不好,然后再去下单。 过去不久的双11、双12网络购
现在有一个未分库分表的系统,未来要分库分表,如何设计才可以让系统从未分库分表动态切换到分库分表上?
领取专属 10元无门槛券
手把手带您无忧上云