首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

双12内容加速推荐

双12内容加速推荐基础概念

内容加速推荐是指在大型促销活动(如双12)期间,通过技术手段优化内容的加载速度和推荐算法,以提升用户体验和提高转化率。这通常涉及到前端优化、后端服务优化、数据库查询优化以及网络传输优化等多个方面。

相关优势

  1. 提升用户体验:快速加载的内容可以减少用户等待时间,提高用户满意度。
  2. 增加转化率:优化后的推荐算法可以更精准地推送用户感兴趣的内容,从而提高购买转化率。
  3. 减轻服务器压力:通过缓存和负载均衡等技术手段,可以有效分散服务器压力,避免系统崩溃。

类型

  1. 前端优化:包括代码压缩、图片懒加载、使用CDN加速等。
  2. 后端优化:涉及数据库索引优化、查询语句优化、异步处理等。
  3. 网络优化:使用HTTP/2协议、启用Gzip压缩、优化DNS解析等。
  4. 推荐算法优化:利用机器学习和大数据分析,提升推荐的准确性和实时性。

应用场景

  • 电商网站:在双12等大型促销活动中,快速加载商品详情页和推荐商品列表。
  • 社交媒体平台:加速视频和图片内容的加载,提升用户互动体验。
  • 新闻门户网站:加快新闻文章的加载速度,提高用户阅读体验。

可能遇到的问题及原因

  1. 页面加载缓慢
    • 原因:可能是由于服务器响应时间长、网络带宽不足、代码冗余或图片过大等原因。
    • 解决方法
    • 解决方法
  • 推荐不准确
    • 原因:可能是由于数据样本不足、算法模型不完善或实时性不够。
    • 解决方法
    • 解决方法
  • 服务器过载
    • 原因:可能是由于瞬间访问量激增,超过了服务器的处理能力。
    • 解决方法
      • 使用负载均衡技术分散流量。
      • 启用缓存机制,减少数据库查询次数。
      • 实施限流策略,防止恶意请求冲击服务器。

总结

双12内容加速推荐是一个综合性的技术挑战,需要从前端到后端,从网络到数据库进行全面优化。通过合理的技术手段和算法优化,可以有效提升用户体验和业务转化率。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

首次揭秘双11双12背后的云数据库技术!| Q推荐

从 2009 年到 2021 年,从千万交易额到千亿交易额,双 11 已经开展了 12 年。如今,每年的双 11 以及一个月后的双 12,已经成为真正意义上的全民购物狂欢节。...刚刚过去的 2021 年双 11,就有超过 8 亿消费者参与。 与攀升的交易额和参与人数相反,双 11 的主要阵地“淘宝 APP”、双 12 的主要阵地“天猫 APP”的崩溃情况逐年减少近无。...是什么样的数据库撑起了 2021 年的双 11 双 12 的稳定进行?...《数据 Cool 谈》第三期,阿里巴巴大淘宝技术部双 12 队长朱成、阿里巴巴业务平台双 11 队长徐培德、阿里巴巴数据库双 11 队长陈锦赋与 InfoQ 主编王一鹏,一同揭秘了双 11 双 12 背后的数据库技术...在双 11 双 12,这种方式的弊端会被进一步放大。数据显示,在双 11 秒杀系统中,秒杀峰值交易数据每秒超过 50 万笔,是一个非常典型的电商秒杀场景。

31.8K50

Typecho安装Redis加速内容

opcache扩展的脚本加速、对象存储图片、动静分离成绩已然无法满足部分站长对速度的极致要求,难道没有更极致的速度么?答案是是有。...Redis,一个可以缓存网站内容的扩展,可以解决你国外服务器延迟的痛苦。 ps:文章内的步骤为宝塔用户步骤,部分非宝塔面板的用户可以参考并更换为自己的步骤。...//github.com/phpgao/TpCache 进入后台插件设置,将端口号修改为6379缓存驱动选择Redis 结束 至此,步骤就都完成了,此时只需尝试刷新缓存,访问自己的网站,即可体验到加速的效果...补充说明 使用Redis加速后容易出现诸如“错误被缓存、评论者信息被缓存、登录密码信息被缓存”等问题,请谨慎使用。

86020
  • 网页内容加速黑科技趣谈

    而服务端渲染版完全不会这样囤积内容,其内容是流式的,这样就要快得多了。就 Github 的客户端渲染来说,很多 JavaScript 代码完全减慢了渲染过程。...在页面之内切换内容可能确实有些好处,特别是存在大量脚本的情况下,无需重新执行全部脚本即可更新内容。但我们能否在不放弃流的情况下完成这样的工作呢?...但下面这个办法就使用了 iframe 和 document.write(),这样我们就能将内容以流的形式添加到页面中了。...给上面的内容写一个解析器就要简单多了。...到了 2017 年,我们也许可以使用一系列组合变换流(composable transform streams)来描述(译者注:本文写作于 2016 年 12 月): // 在 2017 年的某个时候可能会是这样

    2.9K10

    探索Python中的推荐系统:内容推荐

    在推荐系统领域,内容推荐是一种常用的方法,它根据用户的历史行为数据或偏好信息,分析用户对内容的喜好,然后推荐与用户喜好相似的其他内容。...本文将详细介绍内容推荐的原理、实现方式以及如何在Python中应用。 什么是内容推荐?...内容推荐是一种基于内容相似度的推荐方法,它通过分析内容的属性、特征或标签等信息,找到与用户感兴趣的内容相似的其他内容,并推荐给用户。...推荐生成:根据内容的相似度,找到与用户感兴趣的内容相似的其他内容,并将其推荐给用户。...: print(documents[index]) 结论 内容推荐是一种基于内容相似度的推荐方法,通过分析内容的特征和相似度,找到与用户感兴趣的内容相似的其他内容,并推荐给用户。

    25410

    基于内容热度的推荐

    推荐系统本质上要拟合一个用户对内容满意度的函数[1],函数需要多个维度的特征包括:内容、用户等作为输入。个性化推荐建立在大量、有效的数据基础上。...本文将从描述“热度”的视角介绍几种内容推荐策略,完成可解释性的推荐。...过度的推荐让用户停留在“信息茧房”[6]中,但我们还有另一个角度来实现推荐策略。即不考虑用户侧的隐私数据,按照对内容的评分无偏差的对用户进行展示,也就是本文即将描述的基于“热度”的可解释性推荐。...正文 正文部分将会展示一组描述内容“热度”的推荐策略,重点讨论用户反馈、时间衰减对热度分的影响,以上策略可应用在需要无差别曝光的内容推荐场景中。...使用以上公式根据当前温度对项目进行排序 5.引入文章评论、浏览对文章排名的影响 Stack Overflow 引入了问题评论对问题热度排名的影响[12]。

    3.8K20

    常用推荐算法介绍——基于内容的推荐算法

    基本概念 基于内容的过滤算法会推荐与用户最喜欢的物品类似的物品。但是,与协同过滤算法不同,这种算法是根据内容(比如标题、年份、描述),而不是人们使用物品的方式来总结其类似程度的。...在基于内容的协同过滤算法中,要做的第一件事是根据内容,计算出书籍之间的相似度。在本例中,使用了书籍标题中的关键字(图二),这只是为了简化而已。在实际中还可以使用更多的属性。 ?...区别在于:相似度是基于书籍内容的,准确来说是标题,而不是根据使用数据。在本例中,系统会给第一个用户推荐第六本书,之后是第四本书(图六)。同样地,只选取与用户之前评论过的书籍最相似的两本书。 ?...优缺点分析 1、优点 (1)不需要惯用数据 (2)可以为具有特殊兴趣爱好的用户推荐罕见特性的项目 (3)可以使用用户内容特征提供推荐解释,信服度较高 (4)不需要巨大的用户群体或者评分记录,只有一个用户也可以产生推荐列表...(5)没有流行度偏见,能推荐新的或者不是很流行的项目,没有新项目问题 2、缺点 (1)项目内容必须是机器可读和有意义的 (2)容易归档用户 (3)很难有意外,存在推荐结果新颖性问题,相似度太高,惊喜度不够

    2.7K52

    推荐系统常用算法介绍_基于内容推荐算法

    、基于内容的推荐、基于用户的协同过滤推荐、基于项目的协同过滤推荐、基于模型的协同过滤推荐、基于关联规则的推荐 FM: LR: 逻辑回归本质上是线性回归,只是在特征到结果的映射中加入了一层逻辑函数g(z...但我们往往忽略了这种情况只适应于提供商品的电子商务网站,对于新闻,博客或者微内容的推荐系统,情况往往是相反的,物品的数量是海量的,同时也是更新频繁的,所以单从复杂度的角度,这两个算法在不同的系统中各有优势...适用场景: 在非社交网络的网站中,内容内在的联系是很重要的推荐原则,它比基于相似用户的推荐原则更加有效。...启动物品集合需要有多样性,在冷启动时,我们不知道用户的兴趣,而用户兴趣的可能性非常多,为了匹配多样的兴趣,我们需要提供具有很高覆盖率的启动物品集合,这些物品能覆盖几乎所有主流的用户兴趣 4)利用物品的内容信息...5)采用专家标注 很多系统在建立的时候,既没有用户的行为数据,也没有充足的物品内容信息来计算物品相似度。这种情况下,很多系统都利用专家进行标注。

    2.4K30

    书单 | 双12购书清单TOP10

    点击“博文视点Broadview”,获取更多书讯 今天是双12,错过双11的小伙伴们可不要连双12也错过了哦~~ 如果你不知道买哪些书,可以看看大家都在买哪些。...双12福利 京东满100减50,部分图书满减叠券300减200 当当科技好书五折封顶 还等什么?速抢吧!...第4版更新了大量的内容,全书共分为16章和6 个附录,内容涵盖MySQL架构和历史,基准测试和性能剖析,数据库软硬件性能优化,复制、备份和恢复,高可用与高可扩展性,以及云端的MySQL和MySQL相关工具等方面的内容...框架、将ORM框架整合到Spring框架中等内容的方案设计和源码实现。...发布:刘恩惠 审核:陈歆懿 如果喜欢本文欢迎 在看丨留言丨分享至朋友圈 三连  热文推荐   7天搞定一门新技术!

    11.6K40

    详解基于内容的推荐算法

    作者:章华燕 编辑:田 旭 前言 在第一篇文章《推荐算法综述》中我们说到,真正的推荐系统往往是多个推荐算法策略的组合使用,本文介绍的将会是推荐系统最古老的算法:基于内容的推荐算法(Content-Based...随着今日头条的崛起,基于内容的文本推荐就盛行起来。在这种应用中一个item就是一篇文章。 第一步,我们首先要从文章内容中抽取出代表它们的属性。...比如在交友网站上,item就是人,一个item会有结构化属性如身高、学历、籍贯等,也会有非结构化属性(如item自己写的交友宣言,博客内容等等)。...基于内容推荐的优缺点 下面说说基于内容推荐算法的优缺点。...如果一个人以前只看与推荐有关的文章,那CB只会给他推荐更多与推荐相关的文章,它不会知道用户可能还喜欢数码。

    2K41

    腾讯内容加速平台(CAP)助力非主流运营商访问加速

    腾讯内容加速平台(CAP),通过将腾讯内容部署在CAP平台,腾讯的优质内容可以直接提供给中小运营商宽带用户。  ...——腾讯内容加速平台(CAP),通过将腾讯内容部署在CAP平台,并接受中小运营商与腾讯CAP平台网络直联,将腾讯的优质内容直接提供给中小运营商宽带用户。...腾讯内容加速平台(Content Acceleration Platform,简称CAP平台)顾名思义就是可以加速业务的平台,但究竟如何加速,这个平台是怎样的?...腾讯的内容加速平台正是在这种背景下应运而生,它尝试建立一套网络平台,尽可能利用BGP的优势,让一组业务服务器共享服务所有的非主流运营商,将服务器资源复用,同时简化中小运营商的接入路径。...图3:腾讯CAP位置 三、CAP的网络架构   CAP平台由腾讯核心网络设备、接入网络设备、业务服务器组成,运营商通过不同路由双链路接入腾讯CAP两台核心路由器,采用动态路由协议来与中小运营商设备互通,

    5.7K90

    混合推荐系统:结合协同过滤与内容推荐

    基于协同过滤的推荐系统通过分析用户之间的相似性,推荐相似用户喜欢的内容;而基于内容的推荐系统则通过分析内容本身的特征,推荐与用户历史行为相似的内容。...内容推荐 内容推荐系统通过分析内容的特征和用户的历史行为,推荐相似内容给用户。其基本原理如下: 特征提取:从内容中提取出能代表其特征的向量,例如,文本内容可以使用TF-IDF、词嵌入等方法提取特征。...相似度计算:通过计算内容特征向量和用户特征向量之间的相似度,推荐相似内容给用户。 混合推荐 混合推荐系统通过结合协同过滤与内容推荐,生成更为精准和多样化的推荐结果。...结合协同过滤和内容推荐结果,生成最终推荐。...通过计算用户之间的相似度,推荐相似用户喜欢的内容。 混合推荐:结合内容推荐和协同过滤的结果,生成最终推荐。具体步骤包括计算用户特征向量、内容推荐相似度计算、协同过滤推荐结果获取和推荐结果融合。

    50910

    16推荐系统1-2基于内容的推荐系统

    我最常听到的答案是推荐系统。现在,在硅谷有很多团体试图建立很好的推荐系统。因此,如果你考虑网站像亚马逊,或网飞公司或易趣,或 iTunes Genius,有很多的网站或系统试图推荐新产品给用户。...如,亚马逊推荐新书给你,网飞公司试图推荐新电影给你,等等。这些推荐系统,根据浏览你过去买过什么书,或过去评价过什么电影来判断。这些系统会带来很大一部分收入,比如为亚马逊和像网飞这样的公司。...因此,对推荐系统性能的改善,将对这些企业的有实质性和直接的影响。...推荐系统是个有趣的问题,在学术机器学习中因此,我们可以去参加一个学术机器学习会议,推荐系统问题实际上受到很少的关注,或者,至少在学术界它占了很小的份额。...代表电影的数量 如果用户 i 给电影 j 评过分则 r(i,j)=1 )代表用户 i 给电影 j 的评分(只在 r(i,j)=1 时被定义) 代表用户 j 评过分的电影的总数 ---- 16.2 基于内容的推荐系统

    71250

    如何构建基于内容的推荐系统

    推荐阅读时间:9min~11min 文章内容:基于内容的推荐系统 推荐系统起步阶段一般都会选用内容推荐,并且会持续存在。 ? 为什么要做内容推荐 内容推荐非常重要,并且有不可替代的作用。...内容推荐有以下优势: 从内容数据中可以深入挖掘很多信息量 新物品想要快速被推出,首选内容推荐 可解释性好 内容推荐流程 基于内容的推荐,最重要的不是推荐算法,而是内容分析。...内容推荐算法 基于内容的推荐系统,最简单的当属计算用户与物品之间的相似度了。具体来说,物品画像有对应的稀疏向量,用户画像也有对应的稀疏向量,两者之间计算余弦相似度,之后按照相似度结果对物品进行排序。...总结 总结一下,基于内容的推荐有一些天生的优势,也是非常重要的,基于内容推荐时,需要两类数据:物品画像,用户画像。...基于内容来构建推荐系统可以采用的算法有简单地相似度计算,也可以使用机器学习构建监督学习模型。

    1.8K90

    智能存储 :一站式AI内容识别加速内容生产

    适用场景:电商平台 双11大促等活动时,电商平台往往需要在短时间内制作大量的活动海报进行引流。如果使用人工制作,不仅费时费力,还缺乏个性化定制。...适用场景3:会议语音资料转写 大型会议记录工作内容繁杂,若会议时长较长、参会人员较多,则更加难以完整记录。...视频标签 视频标签通过对视频中视觉、场景、行为、物体等信息进行分析,结合多模态信息融合及对齐技术,实现高准确率内容识别,自动输出视频的多维度内容标签。...可应用于视频智能分析、视频审核、视频搜索、视频个性化推荐等场景,助力视频智能生产。 适用场景1:短视频分类 在短视频平台、电商、社交应用等场景下,我们都可以看到精准匹配用户需求的标签推送。...适用场景2:热点推荐 适用于视频平台、电商平台中识别热点明星、商品、情景出现时间,标记后进行推荐。 如果您想了解上述AI能力的接入指引等更多信息,请点击[阅读原文],查阅官网文档。

    5.5K30

    RAG+内容推荐,应该如何实践?

    最近业务有需求:结合RAG+内容推荐,针对实践部分,做一点探究。 话不多说,直接开冲! 背景 首先回顾一下 RAG 技术定义,它可以结合信息检索和生成模型的混合。...基于这样的背景,这种技术在内容推荐、问答系统和自动摘要等领域有着广泛的应用,它能克服纯生成模型对训练数据依赖过大的缺点。 本文将介绍RAG的基本原理,并结合内容推荐机制进行实践演示,包括代码示例。...在内容推荐中,RAG 可以通过 结合用户历史行为和外部文档生成个性化的推荐内容。 例如,可以根据用户的阅读历史检索相关文档,并生成推荐理由或简介,从而提高推荐系统的智能性和用户体验。...num_return_sequences=1) return tokenizer.decode(outputs[0], skip_special_tokens=True) # 结合检索文档生成推荐内容...展望 RAG ,它使得内容更准确、丰富,能够通过精准推荐,获取用户信任感,也适用于多场景,可能需要提升的点在于如何提升检索模型的效率、在复杂模型下,如何确保生成模型的稳定,以及多模态融合等等。。。

    16910
    领券