更高清图像的精确理解、更高质量的训练数据、更强的图像解析推理能力,还能结合图像推理和生成,香港中文大学终身教授贾佳亚团队提出的这款多模态模型Mini-Gemini堪称绝绝子,相当于开源社区的GPT4+DALLE3的王炸组合!
不仅大量占用土地资源、耗费水资源,而且在维护草坪的时候大量使用化肥农药,会造成严重污染。
在迈向通用人工智能(AGI)的诸多可能的方向中,发展多模态大模型(MLLM)已然成为当前炙手可热的重要路径。在 GPT4 对图文理解的冲击下,更多模态的理解成为学术界关注的焦点,通感时代真要来了吗?
高尔夫球场,长期以来的高端社交地,但其存在的背后,却是对资源环境的侵袭。不仅大量占用土地资源、耗费水资源,而且在维护草坪的时候大量使用化肥农药,会造成严重污染。
近几年,深度学习在图像、音频处理等领域得到了广泛的应用并取得了骄人的成绩,本文根据笔者的工作实践,谈谈对深度学习理解,以及我们的应用和经验。文章涉及的很多结论,是笔者个人的理解和不充分实验的结果,所以难免谬误,请读者不吝指正。 机器学习就是学习对象的表示 “机器学习/深度学习模型依靠左右互搏,可以迅速达到很高的智能水准。”、“人工智能/深度学习能毁灭人类的奇点即将来到!” 网络上经常出现这类观点,让笔者非常惊讶。而让笔者更惊讶的是,很多人居然相信了。那么,什么是机器学习呢? 机器学习的对象是我们生活中所接触
这不,Transformer一作携团队也带来了新作,一个规模为80亿参数的多模态大模型Fuyu-8B。
【新智元导读】Facebook 官方博客最新发表文章,详细介绍其 AI 平台 FBLearner Flow 及建立在上面的专用于图像和视频理解任务的 Lumos 平台。Facebook 介绍了利用该平台的图片内容描述和图片搜索技术,这些技术建立在系统能够“理解”像素级的图像内容基础上,将为更丰富的产品体验铺平道路。 回想一下你最近点赞的帖子——非常可能是包含图片或视频的。但是,直到最近,在线搜索包括图像搜索都还一直是文本驱动(text-driven)的技术,是否能搜索到某一张图像取决于它是否有充分的标记或有
区分自我与他人是人类社会生活中最重要的分类之一,在社会活动中如何区分出“自我”意识和“群体”或“他人”意识直接影响了我们如何与社会其他群体产生互动,个体如何在某种文化的生态下,建立自己的分类系统和解释系统是社会心理学界研究的研究热点。一般认为,人们更倾向于使自己的信念和价值观与社会群体相一致。但是,在陈述某种信念时却不接受这些信念的行为,对于预测他人行为和参与社会互动同样至关重要(比如你遇见不相信科学的人的时候,他虽然可以和你讨论关于科学的理论,但他实际上是不相信科学的,那你们之间就会产生关于彼此价值的认同问题)。因此,有必要在自我-他人的区分和自我-他人的融合之间取得一种平衡。
本实验实验原理主要是图像分割技术的应用,以海参为实验对象,将图像中海参区域与背景进行分割,转化为二值图像,统计像素面积作为大小分级依据,从而实现海参大小分级。
更高清图像的精确理解、更高质量的训练数据、更强的图像解析推理能力,还能结合图像推理和生成,香港中文大学终身教授贾佳亚团队提出的这款多模态模型 Mini-Gemini 堪称绝绝子,相当于开源社区的 GPT4+DALLE3 的王炸组合!
上新是商家在电商平台提供商品的第一个环节。以京东商城为例,每年上新商品量过亿,且这一数字还在不断攀升。尤其对于服饰内衣等上新频率高、上新数量多的品类,在最为忙碌、重要又耗时的11.11上新季,如何最大化提升商家的上新效率呢?Drawbot京东商详智能助手正是基于这一需求应运而生的,它可以同时服务京东几十万商家,高质量快速生成详情页,将商品详情页的制作时间由几十分钟缩短到2分钟! 场景 为了帮助商家更快上新,将时间和资源花在其他更具有创造性和价值的工作上,京东推出Drawbot 京东商详智能助手。今年双 11
近日,Facebook 发布了一项新的研究,该研究探索了实例分割的新方法。与掩模 R-CNN 驱动的标准方法相比,TunSoMeM 为探索分割研究提供了新的方向。本文是有关这项研究的具体内容。
随着人工智能技术的迅猛发展,OpenAI 最近推出的 ChatGPT-40 模型无疑成为了业界的一个新的高光时刻。ChatGPT-40 不仅在处理速度上超越了前代产品,还在图像理解和多语种支持上取得了显著的进步。本文将深入探讨 ChatGPT-40 的核心技术特性、它的潜在应用以及这一创新对未来语言模型发展可能带来的影响。
前文对优惠券模板规则进行了总结,优惠券规则主要可分为:优惠规则、有效期和余量控制。在此基础上可细分为如下结构:
说起打麻将我一直是处于比较业余并且不思进取的水平,各个地方的麻将规则不一,繁琐的规则也懒得放脑袋里记忆了,于是每次跟朋友打麻将都是现场临时约定规则,怎么简单怎么来,周边也有不少年轻的小伙伴我一样。
为了增强CLIP在图像理解和编辑方面的能力,上海交通大学、复旦大学、香港中文大学、上海人工智能实验室、澳门大学以及MThreads Inc.等知名机构共同合作推出了Alpha-CLIP。这一创新性的突破旨在克服CLIP的局限性,通过赋予其识别特定区域(由点、笔画或掩码定义)的能力。Alpha-CLIP不仅保留了CLIP的视觉识别能力,而且实现了对图像内容强调的精确控制,使其在各种下游任务中表现出色。
Meta-Transformer是一个用于多模态学习的新框架,用来处理和关联来自多种模态的信息,如自然语言、图像、点云、音频、视频、时间序列和表格数据,虽然各种数据之间存在固有的差距,但是Meta-Transformer利用冻结编码器从共享标记空间的输入数据中提取高级语义特征,不需要配对的多模态训练数据。该框架由统一的数据标记器、模式共享编码器和用于各种下游任务的任务头组成。它是在不同模式下使用未配对数据执行统一学习的第一次努力。实验表明,它可以处理从基础感知到实际应用和数据挖掘的广泛任务。
在数字化时代,信息的获取和记录方式不断革新。photes.io 是一款新兴的笔记软件,它通过人工智能技术,将我们日常生活中拍摄的照片和屏幕截图转换成结构化的文本笔记,极大地提高了信息处理的效率。
大家好,我是猫头虎,今天给大家带来一个非常激动人心的消息!OpenAI 刚刚在 2023 年 9 月 25 日为 ChatGPT 推出了新的语音和图像功能,这意味着 ChatGPT 现在不仅能够与我们交流,还能看到和听到我们的世界啦!😲 下面就让我详细为大家介绍一下这些新功能以及它们将如何改变我们与 ChatGPT 的互动方式。
关注公众号,发现CV技术之美 本篇文章分享论文『TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?』,谷歌提出《Toke
如今,智慧办公是企业办公领域数字化转型的题中之义。作为国内最早开发的软件办公系统之一,金山办公如何应用深度学习实现复杂场景文档图像识别和技术理解?本文将从复杂场景文档的识别与转化、非文本元素检测与文字识别、文本识别中的技术难点等多个方面进行深度解析。 作者 | 金山办公CV技术团队 出品 | 新程序员 在办公场景中,文档类型图像被广泛使用,比如证件、发票、合同、保险单、扫描书籍、拍摄的表格等,这类图像包含了大量的纯文本信息,还包含有表格、图片、印章、手写、公式等复杂的版面布局和结构信息。早前这些信息均采用
当前一个显著的趋势是致力于构建更大更复杂的模型,它们拥有数百/数千亿个参数,能够生成令人印象深刻的语言输出。
张鉴殊:武汉大学本科三年级学生,目前在张潼教授的指导下担任研究实习生,主要研究方向是大语言模型,多模态大语言模型以及持续学习。当下在寻找 2025 fall 博士入学机会。
【新智元导读】Facebook的图像机器学习处理Lumos日前进行了系统更新,在原来对照片和视频进行分类的基础上,运行速度更快,自动识别图像边界,能解释图中人物行为,并且利用以往的知识。Lumos 依靠Facebook的图像文本转换系统和 FBLearner Flow,Facebook表示其目标是使其达到像素般精确。 Facebook去年在Web Summit会议上公布了Lumos平台。它是一个可扩展的系统,用于对照片和视频进行分类。它可以扫描照片,快速训练A.I.识别新照片,查看照片中的对象并描述对象,从
11 月 19 日,根据 2018 年国会通过的《出口管制改革法案(Export Control Reform Act)》要求,美国商务部工业安全署(Department of Commerce, Bureau of Industry and Security, BIS)公布技术出口管制体系框架,并对人工智能(AI)和机器学习技术等 14 类代表性的新兴技术征求公众意见。其中,人工智能(AI)和机器学习技术包括 11 种具体技术应用:
” “音视频+无限可能”是一扇 LiveVideoStackCon面向新兴领域开启的大门,在移动互联网红利消失、内卷的局面下,智能车、制造、金融、医疗、出海等新兴领域还在迫切追寻新技术带来的增值。在“音视频+无限可能”,提前看到新机会、新案例、新实践。 5月20日-21日,LiveVideoStackCon 2022 上海站,和你一同开启通向未来的大门。 视频内容生产与消费创新 音视频技术在整体大环境的影响下,近年来呈现出迅猛的发展趋势,随着更多新概念、新技术的涌现,如元宇宙、虚拟沉浸式、VR/AR等,超高
近日,清华 KEG 实验室与智谱 AI 联合推出了视觉 GUI Agent——CogAgent,CogAgent 是一个通用的视觉理解大模型,具备视觉问答、视觉定位(Grounding)、GUI Agent 等多种能力,可接受 1120×1120 的高分辨率图像输入。在 9 个经典的图像理解榜单上(含 VQAv2,STVQA, DocVQA,TextVQA,MM-VET,POPE 等)取得了通用能力第一的成绩,并在涵盖电脑、手机的 GUI Agent 数据集上(含 Mind2Web,AITW 等),大幅超过基于 LLM 的 Agent,取得第一。
为了更好地引导和推动我国人工智能领域的发展,由中国人工智能学会发起主办,CSDN承办的2015中国人工智能大会(CCAI 2015)于7月26-27日在北京友谊宾馆召开。本次会议的主旨是创办国内人工智
在本文中,我们提出了LLaMA-Adapter V2,一种参数高效的视觉指令模型。具体而言,我们首先通过解锁更多可学习参数(例如,norm、偏置和比例),增强LLaMA Adapter,这些参数在整个LLaMA模型中分布指令跟踪能力。其次,我们提出了一种早期融合策略,只将视觉token输入到早期的LLM层,有助于更好地融合视觉知识。第三,通过优化可学习参数的不相交组,引入了图像-文本对和指令跟踪数据的联合训练范式。这种策略有效地缓解了图像-文本对齐和指令跟踪这两个任务之间的干扰,并通过小规模的图像-文本和指令数据集实现了强大的多模态推理。在推理过程中,我们将额外的专家模型(例如,字幕,OCR系统)集成到LLaMA-Adapter中,以在不增加训练成本的情况下进一步提高其图像理解能力。与原始的LLaMA-Adapter相比,LLaMA-Adapter V2只需在LLaMA上引入14M参数,就可以执行开放式多模态指令。新设计的框架还展示出更强的基于语言的指令跟踪能力,甚至在聊天互动中表现出色。
AI 科技评论按:北京时间 10 月 19 日凌晨,DeepMind 在 Nature 上发布论文《Mastering the game of Go without human knowledge》(不使用人类知识掌握围棋),在这篇论文中,DeepMind展示了他们更强大的新版本围棋程序“AlphaGo Zero”,掀起了人们对AI的大讨论。而在10月28日,Geoffrey Hinton发表最新的胶囊论文,彻底推翻了他三十年来所坚持的算法,又一次掀起学界大讨论。 究竟什么是人工智能?深度学习的发展历程如何
在人工智能飞速发展的今天,大模型的感知能力已经达到了令人惊叹的水平。但是,它们真的能够像人类一样,洞悉图片中的深层含义吗?为了探讨多模型大模型与人类的差距,来自中科院深圳先进院,M-A-P,华中科技大学,零一万物,滑铁卢大学等多家机构联合提出了首个用于评估多模态大模型(MLLMs)图像隐喻理解能力的综合性基准测试II-Bench。
胡晓峰,国防大学教授,少将军衔,兵棋工程总师。兼任中国系统仿真学会副理事长,军事运筹学会副理事长等职。长期从事智能化战争模拟及军事系统工程教学与研究工作,出版专著11部,获得国家科技进步奖3项。 万众
Pri3D:Can 3D Priors Help 2D Representation Learning? (ICCV2021) 代码地址:https://github.com/Sekunde/Pri3
当前,研究社区亟需全面可靠的长视频理解评估基准,以解决现有视频理解评测基准在视频长度不足、类型和任务单一等方面的局限性。
不过近日,谷歌的Gemini终于扬眉吐气了一把,在全新的、更复杂的多模态考试中大获全胜,全面超越了GPT-4o。
随着大数据人工智能技术的蓬勃发展,今天的图像分析技术早已不再是单纯的图片审核,而是基于深度学习等人工智能技术,和海量训练数据,提供综合性的图像智能服务,应用场景包含相册、信息流、社交、广告等,每天分析、处理海量图片,可以大幅提升各类产品的体验、效率。
1.JourneyDB: A Benchmark for Generative Image Understanding
博文视点学院 本周福利课表(5月24-30日) 1 本周限时秒杀 (扫描下方二维码·获取折扣) ▊《深入浅出强化学习:编程实战》 南开大学郭宪老师在线教学回放 本周限时秒杀,仅售6元! 我能从课程中收获什么? ▶强化学习算法理论理解地更透彻 ▶掌握当前最主流的深度学习工具 ▶深度掌握算法原理 ▶可以开发和研究新算法到工作中熟练掌握pytorch和TensorFlow 关于课程讲师 郭宪 南开大学人工智能学院讲师,具有丰富的强化学习算法授课经验,多次给本校本科生和研究生授课,开设知乎专栏“强化学习知识大讲
就在刚刚,商汤新一代「日日新SenseNova 4.0」大模型体系全面升级,多项任务性能超越GPT-4。
1.基本概念 1. 图像分类 模拟图像:连续变化的函数 数字图像:离散的矩阵表示 二值图像:只有0、1 (黑、白) 灰度图像:像素取值是 0-255 ,有中间过度。 彩色(索引)图像:两个矩
点击图片立刻参与! 孙剑博士,一路走好。 作者 | 镁客星球编辑部 今天凌晨,巨星陨落。 6月14日,“AI四小龙”之一的旷视科技发布讣告,旷视首席科学家、旷视研究院院长孙剑博士因突发疾病抢救无效于2022年6月14日凌晨去世。 旷视科技在讣告中表示: 我们万分难过,旷视首席科学家、旷视研究院院长孙剑博士因突发疾病抢救无效,于2022年6月14日凌晨,永远离开了我们。 孙剑博士一生专注于科研工作。他的不幸离世,让旷视失去了一位在人工智能技术领域探索和创新的领路人。每一位和他共事过的旷视同学,失去了一位智
以上这些便利的功能,都使用了图像标签。它们背后的AI算法是如何读懂一张图片的呢?图像标签还有哪些应用?希望这篇文章可以回答你的疑问。
6月22日,北京智源大会举行了认知神经基础专题论坛,来自北京师范大学认知神经科学与学习国家重点实验室的毕彦超教授、北京大学心理与认知学院的方方教授、北京师范大学心理学部的刘嘉教授、北京大学计算机系的吴思教授、中国科学院自动化研究所的余山教授分别做了报告,共同探究认知神经科学能为AI带来什么启发。
无论是擎天柱、伊娃和瓦力或是今年大火的大白,电影中人类往往把机器想象成无所不能的“超人”,但现实呢?人类一些听、看、触摸、感知世界等最基本的能力,对机器而言都有难度,比如——视觉。或许你会说“摄像头”就是机器之眼呀,但过去摄像头的核心作用只有一个:记录影像。李彦宏在2012年KDD(知识发现世界年会)上提出9大待解技术问题之一,“基于内容的的视觉搜索”指的就是这一技术难题。而现在百度率先实现了计算机视觉领域“三维识图”技术的突破,这个难题离彻底解决又迈出了关键一步。 计算机看见的世界与人眼有何不同? 目前
1.Globally Consistent Normal Orientation for Point Clouds by Regularizing the Winding-Number Field(SIGGRAPH 2023 Best Paper)
今日,ECCV 2020五项大奖出炉,分别是最佳论文奖、最佳论文提名奖、Koenderink奖、Mark Everingham奖、Demo奖。
领取专属 10元无门槛券
手把手带您无忧上云