原作者 Amy Lee Walton 编译 CDA 编译团队 本文为 CDA 数据分析师原创作品,转载需授权 当设计地图时,我会想:我想让观看者如何阅读地图上的信息?我想让他们一目了然地看出地理区域的测量结果变化吗?我想要显示出特定地区的多样性吗?或者我想要标明某个区域内的高频率活动或者相对的体积/密度? 有多种方法可以在地图中快速而集中的呈现出可视化数据。我常用的几个是: · Dot density (点密度图) ——使用点或其他符号展示特征或现象的集体情况(密度)的地图样式。例如,显示区域内的交
【大数据100分】冯一村:数据可视化的魅力 主讲嘉宾:冯一村 主持人:中关村大数据产业联盟 副秘书长 陈新河 承办:中关村大数据产业联盟 嘉宾介绍: 冯一村:海云科技创始人 。海云数据是一家做数据可视化的的初创公司。海云数据是“微软创投加速器”第四期入驻的企业。 以下为分享实景全文: 冯一村:大家好,很高兴在微信的平台上和大家来交流。在群里面,大家都是大数据方面的专家,而海云数据还只是一家创业公司,还请大家多多支持。我是海云数据的冯一村。 下面正式进入主题,我们知道大数据的概念已经很火爆了,也看到大家
COVID-19对航空网络的拓扑结构和属性都有很大的影响,其影响的结果表现在网络鲁棒性、连通性和活动性的下降,以及疫情区域的航空网络状态的变化(点击文末“阅读原文”了解更多)。
工作中,我们常常会遇到各式各样的数据,例如网站性能,销售业绩,客户服务 、营销活动等数据。对于这些数据,有哪些行之有效的方法来形象化数据,挖掘数据关系,提升数据价值呢?
作者|Qing Feng,Peter 译者|CarolGuo 编辑|Emily AI 前线导读:机器学习在 Uber 改善应用程序的用户体验方面发挥着核心作用。鉴于 Uber 业务的规模和范围,我们经常需要创造性地思考如何设计这些系统。譬如,在开发合作伙伴活动矩阵(Partner Activity Matrix,一种基于总体使用趋势的个性化司机体验的新工具)时,我们从基因组可视化的生物医学技术(基因组双聚类)中找到了灵感。 更多干货内容请关注微信公众号“AI 前线”,(ID:ai-front) 通过使用
数据可视化是数据展示的常见方式,所谓一图抵千言,好的图表能高效传递信息,让观众一目了然,差的图表往往会不知所云。
Cell Hashing 由NYGC 技术创新小组与Satija实验室合作开发,使用寡核苷酸标记的抗体标记细胞表面表达的蛋白质,在每个单细胞上放置一个"样本条形码",使不同的样品能够一起多路复用,并在单次实验中运行。欲了解更多信息,请参阅此文[1]
上文分享了一些matlab的绘图方法,也给读者推荐3本科研绘图的参考书。同时文末活动(欢迎大家文末留言分享matlab的高阶绘图应用方法,精选3位读者,赠送《MATLAB科研绘图与学术图表绘制从入门到精通》一本)
当“数据大屏”成为一种可以标准化输出的可视化解决方案,非专业的小白也能轻易上手?7月15日数据侠实验室第15期活动中,阿里云开发专家、DataV核心开发者郑新林为我们介绍了阿里在大屏方面的产品布局,并通过多场景的大屏应用案例,从技术角度分享了如何通过DataV系统快速搭建一个数据大屏。
好的数据质量是获得可靠结果的前提,而预处理的质量往往对后处理的结果存在一定的影响。脑电的数据对噪音的敏感性很强,为了提高您数据的质量,在更大程度上将数据中的信噪比提高,获得更严谨的科研结果,我们会对您的数据进行高质量的预处理。
本文描述了如何 使用R执行主成分分析 ( PCA )。您将学习如何 使用 PCA_预测_ 新的个体和变量坐标。我们还将提供 _PCA 结果_背后的理论。
数据可视化,即通过图表形式展现数据,帮助我们快速、准确理解信息。好的可视化会“讲故事”,能向我们揭示数据背后的规律。
小序:做数据可视化的时候,很多时候 UI 妹纸非得自己搞一套设计,可是明明前端图表库已经设定好是这样这样,她非得那样那样;所以,为难咱前端切图仔,必须得掌握点理论知识,才有可能和妹纸进一步的沟通,从而实现良性发展、共同进步。。。🐶 ---- 现如今的应用程序(设计、运营、迭代等)都高度依赖数据,由数据来驱动,我们对于 数据可视化 的需求也愈来愈高。 然而,时不时的,我们总是会遇到一些让人产生疑惑的可视化展示。所以,需要做点什么,来尽力规避这种“混乱”,能否梳理出一些简单的规则来改变这一点? 规则的魅力并不
如果选择了错误的图表类型,或只是默认使用最常见的图表类型,可能会使用户感到困惑,或对数据的意义产生误解。
如今,商业领域的决策越来越重视数据驱动,数据可视化已经是当今的潮流。高质量的数据可视化能帮助人们更好地解读数据的意义,发掘数据背后的价值。但是我们发现,实践中很多图表并不容易让人理解,甚至会产生误导。
如今,商业领域的决策越来越重视数据驱动,数据可视化已经是当今的潮流。高质量的数据可视化能帮助人们更好地解读数据的意义,发掘数据背后的价值。但是我们发现,实践中很多图表并不容易让人理解,甚至会产生误导。因此本文列出如下20条优化建议,希望能够帮助你实现更好的数据可视化。 01 选择正确的图表类型 如果选择了错误的图表类型,或只是默认使用最常见的图表类型,可能会使用户感到困惑,或对数据的意义产生误解。 一个数据集可以用很多种方式来表述,具体采用哪种方式要取决于用户的需求。 所以一定要从检查数据集和调研用户需求着
你的书架,由我承包 上次的回血送书活动大家热情十分高涨哇! 宠粉狂魔——博文菌决定要把这个活动长期搞下去 本次主题【数据分析】,活动清单可不止有书哦 本次内容包括 8本新上市的热销好书以及2门爆款视频课 下面是详情介绍,参与方式可直接拉至文末哦~ 当当网图书暑期阅读季开始啦,博文菌为你送上一份【实付满200减50】的优惠码,可以和当前的【每满100减50】活动叠加使用!遇到喜欢的书放肆地入手吧! 具体怎么用 步骤一,进入当当APP 步骤二,挑选心仪的图书至购物车点击结算 步骤三,点击优惠券/码处
故事的开头是,昨天#5000亿资产是什么水平#上了热搜,因为赌王的离去,他的家产公布激起各种白日梦想家的诞生,坐我旁边的小师妹也算了半天要是放余额宝一天得多少钱
选择错误的图表类型或默认使用最常见的数据可视化类型可能会混淆用户或导致数据误解。相同的数据集可以以多种方式表示,具体取决于用户希望看到的内容。始终从审查您的数据集和用户访谈开始。
因数字而变,因数字而兴。数字中国建设正乘着数字化变革的东风,昂首阔步迈上新征程。在全球经济复苏乏力的背景下,数字经济伴随信息革命浪潮快速发展、逆势上扬。
随着技术的进步,功能磁共振成像(fMRI)已成为脑疾病、认知神经科学等领域的重要研究手段。思影科技紧随潮流,推出了一系列fMRI数据处理培训课程,广受相关领域研究者们的好评。在解决研究者们学习需求的同时,科研合作也变得日趋重要。为此,思影科技推出fMRI数据处理服务,以更好地协助解决大家面临的科研问题,如感兴趣请联系杨晓飞siyingyxf或19962074063(微信号)进行咨询,电话:18580429226
随着疫情的影响以及新兴技术的不断发展,展会的发展形式也逐渐从线下转向线上。通过“云”上启动、云端互动、双线共频的形式开展。通过应用大数据、人工智能、沉浸式交互等多重技术手段,构建数据共享、信息互通、精准匹配的高精度“云展厅”,突破时空壁垒限制。
数据可视化是将信息转换为可视化上下文(例如地图或图形)的实践,以使人脑更容易理解数据并从中获取见解。数据可视化的主要目标是更容易识别大型数据集中的模式、趋势和异常值。该术语通常与其他术语互换使用,包括信息图形、信息可视化和统计图形。
截止 2021 年,全球已有 127 个国家做出了“碳中和”的承诺,能源低碳转型和实现碳中和已经成为全球共同的战略目标。根据权威机构预测,到 2050 年,可再生能源发电将占到全球总发电量的 75% 以上。作为清洁能源的典型代表,风电将满足 35% 的电力需求,并为气候目标贡献 27% 的碳减排量。
背景 近几年,low code、no code、pro code等越来越多的出现在我们的视野中。抱着不被卷的心态 ?,我决定来深入探索一下。 “我所在的是营销部门。每天/月都承载着大量的营销活动,本文
作为小程序开发商,你最怕听到客户说什么?“这个真的太难了,我们不会用啊。”或是“这个操作也太复杂了吧,得耽误不少事情。”于是我们在不断简化操作,给客户提供个性化服务的道路上越走越远,越走越用心。
当冬奥的圣火再次点燃北京,北京这座全球唯一的双奥之城,让这场万众期待,共同参与的冰雪之约成为世界的历史性盛宴,为世界奉献一届精彩、非凡、卓越的奥运盛会。
首先,简单介绍一下作者,宁海涛是211硕士毕业,先后学习Python进行深度学习模型构建以及可视化展示,当然还包括数据分析、数据处理、数据可视化等技能,此外,还特别擅长于使用R语言进行数据统计和可视化绘制,当然还有一些前端、爬虫等这里就不做解释,总之是一位比较全能的优质作者。从2020年5月一直到现在,已连载超过「185+优质原创文章」。
疫情当前,共克时艰,在新型冠状病毒感染的肺炎疫情牵动社会人心的关键时刻,中国计算机学会CAD&CG专委会、阿里云天池、机器之心、阿里云DataV联合发起的以“万众’疫’心 天池众智”为主题的疫情数据可视化公益行动,希望广大开发者围绕疫情态势展示、疫情大众科普、疫情走势预测、疫情物资情况、各地各业人员返工返程情况等需求场景,挖掘复杂异构多源数据之间的关联关系,开发并创作的各种正能量的作品,以形象生动的方式呈现给公众,为夺取防控疫情的胜利贡献力量!
作为城市公共交通的核心,机车的能耗管理不仅直接关系到运营成本,更牵涉到环境保护和能源的高效、可续利用。传统的机车监控手段在现代化需求面前已显得力不从心,亟需构建一个能实时收集和分析运营数据的高效、智能、全面的智能化监控平台。利用先进的可视化技术实时收集分析运营数据,将机车运行状态、能耗情况等信息直观、准确地展现出来,为运营管理和决策提供科学依据。
当Tableau冠军碰上全球领先的创意设计学院——同济大学创意设计学院,会有怎样的思维碰撞?本次数据侠走进校园活动,DT君邀请到的数据侠是来自Merkle的数据分析师林雨旸,作为2017年上海Tableau大赛的冠军,他在同济大学创意设计学院带来一场关于“数据可视化应用”的精彩演讲。
最近有很多小伙伴私信我关于双Y轴图的绘制方法? 这里我就直接给出Python-matplotlib绘制方法和R-ggplot2的绘制方法,主要的知识点如下:
之前看其他大佬的项目,只在意他们通过可视化的数据集,对数据特征挖掘的思路,但没有在意他们做可视化的工具。轮到自己做的时候就发现,wtf!matplotlib可以更难用一点嘛?别人酷炫狂拽,坐标轴上还有直方图的可视化究竟是怎么弄的?
最近有很多小伙伴私信我关于双Y轴图的绘制方法? 这里给出Python-matplotlib绘制方法和R-ggplot2的绘制方法
11月12日凌晨,2020天猫双11落下帷幕,淘宝天猫官方消息,天猫双十一成交额4982亿。媒体报道各不相同,但聚焦的都是4982亿这张照片,它就是天猫双十一向全球提供的唯一窗口--媒体中心的数据大屏。
液化天然气 (Liquefied Natural Gas,简称 LNG) 在能源转型过程中被广泛认可为相对较清洁的能源选择。
上次给大家简单整理了一下细胞鉴定曲线图理解,里面使用nCount_RNA或者nFeature_RNA在R语言里面绘制细胞鉴定曲线,找到一个合适的cutoff值,进行了一个初步的质控。
早期的基因列表解释依赖于选择一系列高得分的基因,然后建立相当主观奇怪的关系。富集分析是一个自动的,基于严格的统计学的方法来分析和解释很大的基因列表,使用的是先验知识。富集分析来评估输入的基因列表在一个已知功能基因集的上调或下调情况。如果一个基因列表中的基因在这个已知功能集中出现的基因数目显著很多,这很可能预示这,这个生物学过程在作者研究的状况下扮演着重要角色。这个分析可以被其他已知的功能基因集重复,这个功能基因集可能数以千计。 过去几年中,有超过60种富集分析方法和工具出现。他们的主要区别在于 -(a)已知功能基因集的数据库不一样 -(b)用来评估富集的统计学方法不一样。 在接下来的几个部分,我们简要review 基因富集已经存在的几种方法,主要考虑到两个方法。 大多数的富集工具都是来自于GO解释,因为它们对大多数生物来说容易获取,并且覆盖的基因数很多,另外,还有其他一些功能基因集存在,除了GO也还有其他一些工具。功能基因集可以基于他们参与的代谢过程或信号通路来进行定义(比如KEGG,Reactome),也可以由基因表达谱调节的目标基因定义(比如mircoRNA,转录因子),也可以由蛋白质特征定义(比如结构域,染色体位置,与某种疾病的联系,刺激因子,或基因扰动等)。多个来源的功能基因集被一些像MSigDB或WhichGenes收集。不是所有的生物被功能基因集覆盖了,并且很多工具值支持特定的生物。 决定富集的统计学方法要么是基于阈值要么是基于全分布。基于阈值的方法需要用户输入排名靠前的不连续的基因列表,这需要设定一个基于统计学的基因得分阈值。基于超几何分布的Fisher‘s精确单尾检验是阐释这个问题的第一个方法,并且会继续成为这种类型最常使用的方法。这些方法对自然非连续分布列表很有用,但是当对连续的基因得分评判时就有缺点了。尤其,结果如果对阈值的选择不稳定,并且,以二进位的方式对待基因得分有很多信息确实(这里说的二进位指的是要么选中,要么不被选中)。另一方面,基于基因全分布的方法没有门槛threshold-free,因为他们检测基因集靠的是比较他们的得分分布vs背景分布。因为这个原因,他们经常被认为是优于threshold-dependent方法,尤其和一个连续的基因集得分。GSEA(Gene-Set Enrichment Analysis),它的基因排序rank源于差异表达或其他统计学,是最流行的技术之一,虽然也有其他的全分布检验模型被提出。
在日常生活中,可视化技术常常是优先选择的方法。尽管在大多数技术学科(包括数据挖掘)中通常强调算法或数学方法,但是可视化技术也能在数据分析方面起到关键性作用。
智慧矿山是一个汇聚了多学科、多主题、多维空间信息的复杂系统,是在矿山地表和地下开采矿产资源的工程活动中所涉及的各种静、动态信息的全部数字化管理,智能分析,可视化展示,从而达到降本增效,实现企业利益的最大化。
蛇形图、贝壳、山脉ーー这是我们设计师可以画出来而不能有效显示数据的图表。我来解释清楚:例如,在一个健身应用程序或视频游戏中图表呈现的目的是娱乐时,这些创意图表是一个不错的选择。但是,如果你的目的是为决策提供信息,那么花里胡哨是行不通的。我们将解析七种与统计、分析和商业不兼容的视觉样式。
链接丨https://medium.muz.li/dataviz-sins-976f3a08948c
使用NIRS_SPM进行激活分析的步骤包括:对原始数据进行格式转化、使用定位信息创建MNI空间坐标、滤波、一阶建模、GLM模型评估、设置设计矩阵、计算beta值等。
本项目使用了两个csv的数据文件,一个是中国高校(大学)的数据,一个是中国高校专业设置的数据
导读 随着2016全国两会的到来,“大数据”再次成为媒体报道的高频词汇。利用大数据打造智慧城市、提高扶贫精准度、关注农业发展、促进居家养老服务业发展、建立两会大数据平台……两会委员“提案夹”中关于大数
数据是非常强大的。当然,如果你能真正理解它想告诉你的内容,那它的强大之处就更能体现出来了。 通过观察数字和统计数据的转换以获得清晰的结论并不是一件容易的事。必须用一个合乎逻辑的、易于理解的方式来呈
数据是非常强大的。当然,如果你能真正理解它想告诉你的内容,那它的强大之处就更能体现出来了。 通过观察数字和统计数据的转换以获得清晰的结论并不是一件容易的事。必须用一个合乎逻辑的、易于理解的方式来呈现数
中科院自动化所神经计算与脑机交互团队(NeuBCI)基于多视图VAE,结合认知神经科学的先验知识,提出了一种基于多视图任务相关对比学习的听觉注意力解码模型。相关研究成果以Auditory Attention Decoding with Task-Related Multi-View Contrastive Learning为题发表于31st ACM International Conference on Multimedia (ACM MM 2023)。
领取专属 10元无门槛券
手把手带您无忧上云