首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    脑机接口新应用,利用深度学习对无声语音信号解码

    浙江大学、中国矿业大学和伦敦大学的研究人员研究了可用于识别神经肌肉信号的空间特征和解码器。具体来说,研究人员提出了利用迁移学习和深度学习的方法,将表面肌电信号数据转换为包含丰富的时频域信息的声谱图。对于迁移学习,在大型图像数据集上使用一个预先训练好的Xception模型来生成特征。然后利用提取的特征对三种深度学习方法(MLP、CNN和bLSTM)进行训练,并对其进行评价,以识别词集中的发音肌肉运动。所提出的解码器成功地识别了无声语音,双向长短时记忆的准确率达到了90%,优于其他两种算法。实验结果验证了谱图特征和深度学习算法的有效性。

    02

    Nature子刊:EEG源成像可检测到皮层下电生理活动

    皮层下神经元活动与大尺度脑网络高度相关。尽管脑电图(EEG)记录提供了较高的时间分辨率和较大的覆盖范围来研究整个大脑活动的动力学,但是皮层下信号检测的可行性尚有争议。来自日内瓦大学的Martin Seeber等人在NATURE COMMUNICATIONS杂志发文,该研究探讨了了头皮脑电是否可以检测并正确定位放置在中央丘脑和伏隔核中的颅内电极记录的信号。放置在这些区域的深部脑刺激电极(DBS)可与高密度(256通道)EEG信号同时记录活动。在三名闭眼休息的患者中,研究者发现从颅内发出的alpha信号和脑电溯源分析的结果之间存在显著相关性。 脑电溯源分析给出的信号与颅内DBS 电极给出的信号高度相关。因此,该研究提供直接证据表明头皮脑电确实可以感知皮层下信号。

    03

    基于EEG-EMG混合控制方法的研究—生物机器人应用:现状、挑战与未来方向(二)

    02 基于肌电图的混合控制方法综述 基于EEG-EMG的混合控制接口的基本思想是在控制方法中融合EEG和EMG信号,信号的融合可以以许多不同的方式进行,并且可能取决于特定应用和用户能力等因素。在这个混合接口中,结合了EEG信号和EMG信号,混合方法的应用可能有所不同,从一个简单的游戏控制应用程序,到假肢手臂控制应用程序。 这篇综述的主要目的是研究生物机器人学的应用,例如假肢和外骨骼,因此范围缩小到研究混合EEG-EMG方法在生物机器人中的应用。如前所述,有许多可能的方法将肌电图和脑电图信号结合在一种特定的控制方法内,以提高有效性。 一般来说,EEG或EMG信号可用于操作应用程序的各个部分,例如辅助设备中的部件,或者,所有这些都可以组合起来。后者将允许用户根据自己的喜好从一个控制信号平稳地切换到另一个控制信号。 有几种方法可以用来对生物机器人应用中的脑电-肌电混合控制方法进行分类,如特定的应用/设备(如假肢、外骨骼、轮椅)或输入处理方法。作为一个双输入系统,混合EEG-EMG接口可以同时处理输入信号,也可以按顺序处理输入信号。 在这篇综述文章中,我们将把生物机器人应用中的混合控制方法的每一项研究分为两类,根据输入处理方法是同时的还是顺序的,EEG-EMG方法的比较和本文讨论的不同混合方法的重要特征总结如表1所示。重要的是,无论EEG-EMG信号的融合方法是什么,与单独使用EMG或EEG信号的方法相比,混合方法能获得更高的有效性。

    03
    领券