在上一篇推送中我们总结了机器学习第一课:一些最最基本的概念,比如特征,训练集,维数,假设空间等,通过一个例子说明什么是机器学习的泛化能力。接下来,再通过一个例子说明什么是归纳偏好。 归纳偏好 归纳偏好(inductive bias),机器学习算法在学习过程中对某种类型假设的偏好。 任何一个有效的机器学习算法必有其归纳偏好,否则它将被假设空间中看似在训练集上等效的假设所迷惑,而无法生成确定的学习结果,这也是机器学习中非常重要的概念,举例说明。 例子 如果我们在购买某个股票时假定根据两个主要特征:股票经纪公司等
618的预热已经结束,电商平台的终端优惠价格基本都已经出来了,下一波就是6月16-18号的优惠期。
面对即将到来的双11购物狂潮,小伙伴们最担心的恐怕不是优惠力度不够,或者是钱包有点瘪,而是买买买之后,要经过多长时间的漫长等待,才能拿到自己的宝贝呢?为了加速整个物流过程,阿里、京东等公司可谓花了血本,历经多年打造的黑科技项目,能否应对今年的双11呢? 菜鸟智能发货引擎:为每一个包裹匹配最合适的快递公司 为客户选择一个合适的快递公司,以最快的速度将货物送到客户手中是每个商家的心愿,然而在现实中,大部分商家选择快递是,基本都是凭经验、比价格的方式按区域对订单包裹进行分配,因为没有办法全面了解各家快递公司的优势
12 月 8 日晚 19:00,「Milvus 冬日限定趴」 在 Zilliz 视频号直播间与大家相聚!在 2.2 新版本发布之际,Milvus 社区用户的老朋友,Zilliz 研发工程师李成龙带来了 Milvus 新功能的解读。来自什么值得买的架构师杨守斌和苏宁的智能运营研发中心技术总监宋志也来到直播间与大家分享了 Milvus 在电商领域中的实践。
大三的时候学过一门“人工智能导论”的课,只记得课里有一些回溯和图搜索的算法,具体细节全忘了。
AI科技评论按:对于那些一直想进行深度学习研究的同学来说,如何选择合适的配置一直是个比较纠结的问题,既要考虑到使用的场景,又要考虑到价格等各方面因素。 日前,medium上的一篇文章为我们详细描述了该如何为个人的深度学习机器选择配置,主要该进行哪些方面的考虑。 AI科技评论编译整理如下: 作为一名业余爱好者,在探索和解决深度学习问题时,亚马逊 EC2 实例的运行成本太高了。 在一开始,我采用的是 Reserved 实例收费模式,因为我对云生态系统不是很懂。 后来,在运行结构良好的实验时,Spot 实例也成了
对于那些一直想进行深度学习研究的同学来说,如何选择合适的配置一直是个比较纠结的问题,既要考虑到使用的场景,又要考虑到价格等各方面因素。日前,medium上的一篇文章(http://t.cn/RYLYxXP)为我们详细描述了该如何为个人的深度学习机器选择配置,主要该进行哪些方面的考虑。以下是AI研习社的翻译: 作为一名业余爱好者,在探索和解决深度学习问题时,亚马逊 EC2 实例的运行成本太高了。在一开始,我采用的是 Reserved 实例收费模式,因为我对云生态系统不是很懂。后来,在运行结构良好的实验时,Sp
作者 | 阿司匹林 出品 | 人工智能头条(公众号ID:AI_Thinker) 在到处都是开源工具和学习资料的今天,深度学习的门槛已经大大降低。然而,学习的门槛降低并不意味着学习的成本降低了,比如说动则上万的 GPU。 不管是买 GPU,还是买云服务,对很多人来说都是一笔不小的花销。今天,我们就教大家一个薅资本主义羊毛的新方法:通过 Kaggle Kernels 免费使用英伟达 GPU! 首先,我们来介绍下什么是 Kaggle Kernels。 Kaggle 是一个为开发商和数据科学家提供举办机器学习竞赛
在这个时代背景下,信息爆炸与长尾问题普遍发生,而解决方案之一是个性化推荐技术,那具体什么是个性化推荐,怎么去实现这一过程呢?这一章读者朋友需要做到的是读完以后,对个性化推荐技术有一个全局宏观的认识,对于细节不用过多地苛求。
作者:Lands、Allen、连长、恺哥、潇姐 2020 摆地摊,新风口! 那么,Quant摆摊后都会干啥呢? ▍卖方金工:卖研报 5元3本太俗气,我们论斤卖! 免费打包,送货上门 ▍量化网红:卖小黄书 彩色印刷,图文并茂 看得懂、学得会、用得上! 买不了吃亏,买不了上当 ▍量化大佬:烤韭菜 白天割韭菜,晚上烤韭菜 平日太辛苦,晚上补一补 ▍多因子研究员:街头要饭 看天吃饭 因子不在多,有Alpha则灵 回撤不在深,不亏就行 ▍量化实习生:卖简历 985+211 虽然策略没赚钱 3个国家读过书 4
到年底了,又到了各大高校开始动手采购GPU服务器的时候到了,最近不少学生在QQ上请我们帮忙看看配置
每天给你送来NLP技术干货! ---- 作者:李沐,亚马逊首席科学家,来源:新智元 【导读】AI大牛李沐带你来装机! AI大牛沐神来装机了,还是训练100亿参数模型那种。 在还没出装机视频前,李沐老师曾发起了一个小小的问卷调查,趁着显卡降价,看下童鞋们对装机跑Transformer有多大兴趣。 当时,就连华为天才少年「稚晖君」都来点赞了,足见大家还是很期待的。 这不,沐神带着他的装机视频来了。怎样用最低的成本训练一个100亿模型? 而就在最近,币圈也在一直降温,同时GPU也明显降价了不少,就比
编译 | 刘畅、尚岩奇、林椿眄 审校 | reason_W 2017年末,Facebook应用机器学习组发布最新论文,对整个Facebook的机器学习软硬件架构进行了介绍。纵览全文,我们也可以从中对Facebook各产品的机器学习策略一窥究竟。论文中涉及到机器学习在全球规模(上亿级数据处理)上的全新挑战,并给出了Facebook的应对策略和解决思路,对相关行业和研究极其有意义。 摘要 机器学习在Facebook的众多产品和服务中都有着举足轻重的地位。 本文将详细介绍Facebook在机器学习方面的软硬件
作者:仁基,元涵,仁重 本文选自:《尽在双11:阿里巴巴技术演进与超越》 近十年,人工智能在越来越多的领域走进和改变着我们的生活,而在互联网领域,人工智能则得到了更普遍和广泛的应用。作为淘宝平台的基石,搜索也一直在打造适合电商平台的人工智能体系,而每年双11大促都是验证智能化进程的试金石。伴随着一年又一年双11的考验,搜索智能化体系逐渐打造成型,已经成为平台稳定健康发展的核动力。 演进概述 阿里搜索技术体系目前基本形成了offline、nearline、online三层体系,分工协作,保证电商平台
2002年,单身青年说双11还是光棍节。 2012年,电商平台说双11成了消费节。 2022年,腾讯课堂的学习型青年大胆开麦:我们的双11是学习节! 11月12日,国内领先的在线职业教育平台腾讯课堂发布了《2022双11网课消费趋势报告》。报告显示,从算法、编程到情商口才,从汽修、消防到短视频带货,从养花养草到科学养娃……这届学习型青年对各类技能的学习热情在双11期间拉满。对他们来说,没有什么人生问题是一节网课解决不了的,如果有,那就上两节。 趋势一:人均学习时长是去年1.5倍 学习型青年:跟剁手热情一样
作者:常佩琦 【新智元导读】春运已到达高峰期,不少浏览器推出了人工智能抢票和选座功能。而黄牛党也与时俱进,用机器人和AI恶意刷票。如何应对这种现象?专家表示可利用机器学习来阻击黄牛党。 又到了一年一度的春运大战。与往年不同的是,AI在今年的春运大战中扮演了重要角色。 据悉,今年春运全国旅客发送量预计将达到30亿人次,预计铁路、民航分别增长8.8%和10%。如此庞大的返乡人群,加大了购票的难度。而12306利用稀奇古怪的图像验证码来防止黄牛党恶意刷票,结果却苦了正常购票的用户。 不断有网友吐槽,12306网站
现在开大会,不说点儿 AI 就 out 了,曾有网友开玩笑说,今年 Google I/O 的发布会就是:Google 系列产品+ AI。
它就是2018年苹果旗舰机iPhone XS Max,作为iPhoneX之后的S代,Face ID更加成熟,更大的屏幕更大的电池以及现在更低的二手机价格,当之无愧的成为现在性价比最高的IPhone产品。
微软剑桥联合推出 DeepCoder 近日 AI 研习社获悉,微软和剑桥大学的研究员近日发布了一篇介绍“会编程的机器学习系统——DeepCoder”的论文。据介绍,DeepCoder 系统可以解决编程比赛所涉及到的基础编程题目,为不会编程的人提供了制作简易程序的可能。 DeepCoder 研究人员表示,“DeepCoder 可以让非编程人员通过向计算机描述自己的程序构想来获得想要的程序,系统会自动写就。但这并不意味着程序员就会失业,研究人员表示,DeepCoder 的出现,可以让开发人员将精力放在更复杂、更
机器之心报道 机器之心编辑部 MLPerf 是一项机器学习公开基准,展示了每个参与机构在特定任务上利用自有资源所能达到的最佳性能。该基准于今年 5 月启动,已经得到了来自 30 多个公司的研究者和科
对于那些非计算机科学行业的人,你会如何向他们解释机器学习和数据挖掘? 斯坦福大学的印度学生、机器学习爱好者 Pararth Shah 在2012年12月22日的回复,非常经典,得赞数有 3700+。 买点芒果去 假设有一天你准备去买点芒果。有个小贩摆放了一车。你可以一个一个挑,然后小贩根据你挑的芒果的斤两来算钱(在印度的典型情况)。显然,你想挑最甜最熟的芒果对吧(因为小贩是按芒果的重量来算钱,而不是按芒果的品质来算钱的)。可是你准备怎么挑呢?你记得奶奶和你说过,嫩黄的芒果比暗黄的甜。所以你有了一个简单的判断
眼下AI大热,而有一家企业早就意识到AI与机器学习已经不再是一家企业可有可无的优势项目,而是一项必备的能力,这家企业就是百事集团。
从去年下半年到今年8月,英伟达市值一路攀升,创下5080亿美元的记录,位居半导体行业第二位,而英伟达联合创始人、CEO兼总裁黄仁勋的身价也涨至190亿美元。
2015年12月10-12日,由中国计算机学会(CCF)主办,CCF大数据专家委员会承办,中国科学院计算技术研究所、北京中科天玑科技有限公司与CSDN共同协办的2015中国大数据技术大会(Big Da
麻省理工学院一位经济学家撰写的新研究表明,改进后的翻译软件可以显著促进在线国际贸易——这是机器学习对经济活动产生明显影响的一个显著案例。研究发现,eBay在2014年改进了自动翻译程序后,可以使用这一新系统的两个国家的贸易额猛增了10.9%。
机器之心报道 编辑:泽南、小舟 FSR 将适用于 GTX 10 系列至今以来的所有显卡,是的你没看错,支持英伟达的显卡。 刚刚在台北 ComputeX 展会上,AMD 原本被认为日常走过场的主题演讲却让很多硬件媒体高呼「惊讶」,这家公司发布的新产品和技术成为了人们热议的话题。 今天上午,AMD 宣布了自己对标英伟达 DLSS 的超分辨率技术 FSR。相较竞品,AMD 的技术既不需要买新硬件(无需 AI 加速单元),也不需要品牌站队(英伟达显卡也支持)。 这对于玩家来说是免费的性能提升。AMD 表示,其参与的
除了高性能计算,GPU自身具备的高并行度、矩阵运算与强大的浮点计算能力非常符合深度学习的需求。它可以大幅加速深度学习模型的训练,在相同精度下能提供更快的处理速度、更少的服务器投入以及更低的功耗。小编结合工作中客户咨询的经验,总结出英伟达5大热门机器学习用GPU卡。 第五名:Tesla K80 Tesla ——英伟达高端大气上档次专用计算卡品牌,以性能高、稳定性强,适用于长时间高强度计算著称。 Tesla K80 双GPU 加速器可透过一卡双 GPU 提供双倍传输量,内置24G
海致BDP进军教育市场,与恒企教育合作打造O2O教育新模式;九次方大数据与韩国The IMC集团达成战略合作,将共建舆情大数据平台;Teradata发布物联网分析加速器,将物联网数据转化为洞察信息……
AI科技评论按:“算法”这两字在人工智能圈已然成为“高大上”的代名词,由于不少在校生和职场新人对它过度迷恋,多名 AI 资深人士均对这一现象表示担忧。李开复曾这样说到: 现在的 AI 科学家大部分是在科研环境中培养出来的,不但欠缺工程化、产品化的经验,而且对于错综复杂的商业环境也并不熟悉,更缺乏解决实际问题所必须的数据资源。 随着开源框架层出不穷,人工智能产品化和商业化进程不断加速,使得算法的门槛逐渐降低,但对工程的要求不断在提高。这种情况下,实际应用和工程能力基础扎实的技术人才变得异常抢手。 其实 AI
AI 科技评论按,就在上个月,波士顿动力在 YouTube 上刷了一波 Atlas 2 的新技能。从视频中可以看到,相比今年五月在跨越障碍时还得停顿片刻,这次 Atlas 2 可以直接奔跑着跨越了。
如果你想了,那么请继续往下看,经过我对比的三大云服务厂商的双11优惠政策,带你拿下最爽的服务器!!!!!
这道理放在编程上也一并受用。在编程方面有着天赋异禀的人毕竟是少数,我们大多数人想要从编程小白进阶到高手,需要经历的是日积月累的学习,那么如何学习呢?当然是每天都练习一道题目!!
但即便如此,万亿市值的苹果依然展现出不少亮点——尤其是AI方面,新一代芯片A12,贯穿全场。
2012年,「GPU+深度学习」真正引爆革命火花 由于多层神经网络的计算量庞大、训练时间过长,常常跑一次模型就喷掉数周、甚至数月的时间,2006年该时也仅是让学界知道:「深度神经网络这项技术是有可能实现的」而已,并没有真正火红起来。 真正的转折点,还是要到2012年——那年10月,机器学习界发生了一件大事。 还记得我们在【(图解)人工智能的黄金年代:机器学习】一文中提过的ImageNet吗?美国普林斯顿大学李飞飞与李凯教授在2007年合作开启了一个名为「ImageNet」的项目,他们下载了数以百万计的照片
---- 新智元报道 编辑:克雷格、肖琴、子涵 【新智元导读】3月份的2018 GTC结束后,英伟达今天在中国台湾开了个“专场”,发布了不少新产品,其中包括英伟达GPU服务器标准平台HGX-2和全新的RTX技术,并且黄教主还坚称英伟达GPU“买得越多,省的越多”。 黄仁勋说,今天这场演讲聚焦三大主题: 1、如何持续强化GPU运算能力。 2、庞大的系统、基础架构以及软件生态系统正在围绕英伟达的平台而建立。 3、庞大的终端市场商机以及英伟达建立的软件平台将合作运作
11月21日 亚马逊欲在线下普及Amazon Pay,挑战苹果Apple Pay
这届双十一显得有些疲,我在朋友圈说“《静悄悄的双11》这类报道应该很快就要出炉”不久,对应内容就已出现多篇。一方面,在新的市场竞争环境中,头部平台变得更加低调,不再有“二选一”这样的口水战,对GMV等数据的公布变得低调了许多,甚至一些平台还要求品牌不得高调发送“战报”。另一方面,因为疫情的原因,各大主流电商平台11月11日当天的“双11直播”活动转战线上,进一步降低了声量。总而言之,今年的双十一,平台低调多了。
今天分享的内容是 玩转 AIGC「2024」 系列文档中的 仅需 2100 元,打造一台 AI 服务器,玩转本地大模型和 Stable Diffusion。
从吴军的新书,得知有一个37%幸福规则,是科学家经过大量数据分析总结而来的,大意如下:
NVIDIA 创始人兼 CEO 黄仁勋先生关于计算领域之未来的主题演讲。 演讲人:黄仁勋 NVIDIA 创始人兼 CEO 2018/11/21 周三 10:00 - 12:00 | 主会场 三层金鸡湖厅
刚刚在台北 ComputeX 展会上,AMD 原本被认为日常走过场的主题演讲却让很多硬件媒体高呼「惊讶」,这家公司发布的新产品和技术成为了人们热议的话题。
场景1:如果在电商平台中入驻的商家想要卖出更多的东西就需要电商平台帮住通过push、短信甚至邮件的方式引流,提醒存在潜在购买可能的用户“来来来这家店不错”,通过这种方式的收费其实是空手套白狼,投入产出比巨高那如何寻找到合适的用户推荐给合适的商家呢?
机器学习是Facebook许多重要产品和服务的核心技术。这篇论文来自Facebook的17位科学家和工程师,向世界介绍了Facebook应用机器学习的软件及硬件架构。 本着“赋予人们建立社区的力量,使世界更紧密地联系在一起”的使命,到2017年12月,Facebook已经将全球超过二十亿人连接在一起。同时,在过去几年里,机器学习在实际问题上的应用正在发生一场革命,这场革命的基石便是机器学习算法创新、大量的模型训练数据和高性能计算机体系结构进展的良性循环。在Facebook,机器学习提供了驱动几乎全部用户服务
本文介绍了技术社区内容编辑在撰写文章摘要时需要注意的五个关键点:1.突出关键信息,2.简洁表达,3.引导读者,4.与原文相一致,5.吸引读者。通过案例展示了如何应用这些原则来撰写摘要。
“这太疯狂了!USB 3.0!千兆以太网!WiFi 802.11ac,蓝牙5.0,4GB内存!4K60帧显示!最贵才55美元?!”
到底什么是推荐系统?按照维基百科的定义:它是一种信息过滤系统,用于预测用户(User)对物品(Item)的评分和偏好。这个定义不是很好理解。我们可以从以下几个角度来了解推荐系统。
预料之内的是,Python 并没有完全「吞噬」R 语言的空间,但这项基于 954 个参与者的投票显示,Python 生态系统在今年已经超越了 R 语言,成为了数据分析、数据科学和机器学习的第一大语言。
日报君 发自 凹非寺 量子位 | 公众号 QbitAI 盆友们,周四啦,昨晚有熬夜蹲守凌晨苹果发布会的没~ 今天科技圈又有哪些新鲜事呢?一起来看看吧。 AI工具能预测冠状病毒未来变种 AI可以用来预测未来新冠病毒的变种了,这有望促进下一代抗体疗法及疫苗的研发。 这是苏黎世联邦理工学院团队的研究成果,相关研究已经发表在最新一期的Cell杂志上。 此次研究成果并不仅仅针对新冠病毒,而是包括新冠病毒在内的冠状病毒。 研究人员在实验室制造出大约100万个新冠病毒刺突蛋白变种,均携带不同的突变和突变组合。 然后对
一家名为GOAT的潮鞋交易平台正尝试用机器学习,从七张照片中识别出一双鞋子是否是真的。
在进行机器学习项目时,特别是在处理深度学习和神经网络时,最好使用GPU而不是CPU来处理,因为在神经网络方面,即使是一个非常基本的GPU也会胜过CPU。
领取专属 10元无门槛券
手把手带您无忧上云