首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    11就要来了,选购扫地机器人你要留意这几点

    但是,很多家庭把扫地机器人带回家之后,要不弄得家里鸡飞狗跳,要不用了几次之后就束之高阁了。该如何选购合适的扫地机器人呢?11又要来了,如果你打算败一个扫地机器人回家的话,千万要记得以下几点。...清扫配件 扫地机器人的清扫部件主要分为吸口、主刷和边刷。 目前市面上的扫地机器人有浮动单吸口、固定单吸口和小吸口这三种不同类型。...随机式清扫模式:扫地机器人感知四周的环境随机的行走清扫各个区域,缺点是很容易造成重复性清扫和遗漏。规划式清扫模式:扫地机器人感知四周的环境,然后规划行走的路径,有效地遍历各个区域,完成各个区域的打扫。...下图就可以反映出两种不同扫地机器人孰高孰低了。...至于预约清扫、自动回充这些功能,现在的扫地机器人基本都已经必备了。 看到这里,你是不是对扫地机器人有个底了呢?那么趁着11,赶紧败一个心仪的扫地机器人回家吧。

    5.6K40

    吴恩达机器学习笔记 —— 12 机器学习系统设计

    本章主要围绕机器学习的推荐实践过程以及评测指标,一方面告诉我们如何优化我们的模型;另一方面告诉我们对于分类的算法,使用精确率和召回率或者F1值来衡量效果更佳。...最后还强调了下,在大部分的机器学习中,训练样本对模型的准确率都有一定的影响。...机器学习最佳实践 针对垃圾邮件分类这个项目,一般的做法是,首先由一堆的邮件和是否是垃圾邮件的标注,如[(邮件内容1,是),(邮件内容2,否),(邮件内容3,是)...]。...接下来如果想要优化机器学习模型,可以有下面几种: 1 搜集更多的数据 2 从邮件的地址中寻找新的feature 3 从邮件内容中寻找新的feature 4 基于更复杂的算法检测错拼词 推荐的步骤是...: 1 先通过一些简单的算法快速实现,然后通过交叉验证选择一个比较好的模型 2 通过学习曲线,确定是属于高偏差的情况、还是高方差的情况,再来决定是否增加样本、或者增加特征 3 错误分类的分析,通过分析那些被分错的样本

    36700

    机器学习12天:聚类

    无监督学习介绍 某位著名计算机科学家有句话:“如果智能是蛋糕,无监督学习将是蛋糕本体,有监督学习是蛋糕上的糖霜,强化学习是蛋糕上的樱桃” 现在的人工智能大多数应用有监督学习,但无监督学习的世界也是广阔的...,因为如今大部分的数据都是没有标签的 上一篇文章讲到的降维就是一种无监督学习技术,我们将在本章介绍聚类 聚类 聚类是指发现数据集中集群的共同点,在没有人为标注的情况下将数据集区分为指定数量的类别 K-Means...使用方法 from sklearn.cluster import KMeans model = KMeans(n_clusters=3) model.fit(data) 这段代码导入了KMeans机器学习库...Decision Boundaries') plt.xlabel('Feature 1') plt.ylabel('Feature 2') plt.legend() plt.show() 本章总结 无监督学习的意义

    15510

    机器学习》笔记-计算学习理论(12

    对于自己,经历了一段时间的系统学习(参考《机器学习/深度学习入门资料汇总》),现在计划重新阅读《机器学习》[周志华]和《深度学习》[Goodfellow et al]这两本书,并在阅读的过程中进行记录和总结...这两本是机器学习和深度学习的入门经典。...即关于机器学习的理论基础,其目的是分析学习任务的困难本质,为学习算法提供理论保证,并根据分析结果指导算法设计。...往期回顾之作者刘才权专栏 【1】《机器学习》笔记-聚类(9) 【2】《机器学习》笔记-集成学习(8) 【3】《机器学习》笔记-贝叶斯分类器(7) 【4】《机器学习》笔记-支持向量机(6) 【5】《机器学习...》笔记-神经网络(5) 【6】2017年历史文章汇总|机器学习

    1.1K40

    机器学习12)——随机森林集成学习随机森林

    集成学习 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器。...常见的集成学习思想有: (1)投票选举(bagging: 自举汇聚法 bootstrap aggregating): 是基于数据随机重抽样分类器构造的方法 (2)再学习(boosting): 是基于所有分类器的加权求和的方法...RF的主要缺点: 1..在某些噪音比较大的特征上,RF模型容易陷入过拟; 2.取值比较多的划分特征对RF的决策会产生更大的影响,从而有可能影响模型的效果; 示例:乳腺癌预测 在现实生活中,机器学习的应用非常广泛...=16) plt.grid(b=True, ls=':') plt.legend(loc='lower right', fancybox=True, framealpha=0.8, fontsize=12...plt.ylabel(u'错误率', fontsize=16) plt.legend(loc='upper left', fancybox=True, framealpha=0.8, fontsize=12

    2.4K60

    机器学习秋招坎坷路

    写在前面的话:部分牛友在评论区喷 强调机器学习、算法要求没那么高,那么我说一句,你们凭心而论,如果不是手里有那么些个竞赛大奖或者acm等算法大奖,你们的简历怎么能说好,况且算法大奖这些东西毕竟只存在于少数人之中...,不可能人手必备(本来就是写给非学弟学妹的建议 大佬们勿喷)。...要做到这个 请务必刷算法题,尽量不要找机器学习、算法相关的工作 除非你有大的项目作为支撑,因为这些大公司这些岗位基本要求C9硕士!...12、讲ssh搭建 。。。。...12、redis的持久化(aof和rdb),redis和本地缓存优劣分析 13、在分布式情况下,如何实现服务器之间数据的一致性,后面又问了CAP原理 14、算法:二叉树的反转 15、谈谈你学习新技术的方法

    2.2K70

    Facebook 的应用机器学习平台

    本着“赋予人们建立社区的力量,使世界更紧密地联系在一起”的使命,到2017年12月,Facebook已经将全球超过二十亿人连接在一起。...Facebook产品或服务使用的机器学习算法。 C.Facebook内部“机器学习作为服务” Facebook有几个内部平台和工具包,目的是简化在Facebook产品中利用机器学习的任务。...Facebook大多数的机器学习训练通过FBLearner平台完成。这些工具和平台协同工作的目的是提高机器学习工程师的生产力,并帮助他们专注于算法的创新。 ? Facebook机器学习流和架构。...Caffe2是Facebook的内部训练和部署大规模机器学习模型的框架。Caffe2关注产品要求的几个关键的特征:性能、跨平台支持,以及基本的机器学习算法。...2017年12月Facebook全球数据中心位置。 随着深度学习在多个产品中得到应用,GPU计算和大数据之间的布局越来越重要。并且面向巨型区域存储的战略支点使计算-数据的共同布局变得更加复杂。

    2.3K50

    机器学习工业复现的 12 个要素!

    编辑:张倩,来源:机器之心 在机器学习社区,越来越多的人开始讨论研究的可复现性,但这些讨论大部分局限于学术环境。如何确保生产环境的ML可复现?...近日,机器学习开发服务提供商 maiot.io 的 CTO Benedikt Koller 发布一篇博客文章,介绍了他基于自身经验总结的开发可复现生产级机器学习所要注意的 12 个要素。...机器学习这个领域虽不同于传统的软件开发,但我们也能从软件开发行业汲取很多实用的经验教训。过去几年里,我们一直在开发生产型机器学习项目。...现在,我们将这些经验进行了归纳总结,得到了成功构建生产型机器学习12 个要素(类似于软件开发中的十二要素应用/12 factor app)。 1....机器学习其实是一种特殊的软件开发,有着自己特定的要求。首先,机器学习中会变化的部分不止一种,而是两种:代码和数据。

    36510

    机器学习平台的演进史

    第二代机器学习平台侧重于模型:重点是快速创建和跟踪实验,以及部署、监控和理解模型。 第三代机器学习平台侧重于数据:重点是特征和标签的构建以及机器学习工作流的自动化。...这三类机器学习平台并没有绝对的优劣,对于企业而言,也不一定一开始就要选择第三代机器学习平台,凡事都要有一个演进的过程。...如果说草创阶段,大可以选择第一代机器学习平台,先让机器学习应用于业务,产生业务价值;然后再引入第二代机器学习平台机器学习模型能快速且自动化的应用于业务。...第二代机器学习平台:基于模型的解决方案 正是因为第一代机器学习平台有着种种缺陷,于是有人开始讨论“数据科学工作流程”或机器学习开发生命周期 (MLDLC)。...第三代机器学习平台是因为 AI 算法已经足够成熟了,只需要像平台提供一些训练数据就可以让平台完成一次机器学习模型的训练和部署到生产环境。

    2.4K30

    【综述】机器学习中的12类算法

    导读 最近在研究一些机器学习方面的论文,翻到了一篇较早的机器学习综述(2017年),虽然不是最新的研究现状,但考虑到经典机器学习算法其实发展并不像深度学习那么迅猛,所以其论述还是很有参考性。...主要包括12机器学习算法。 本文为个人翻译分享,限于英语水平,定有翻译不当甚至的错误的地方还望谅解。另外,部分不为熟知的算法举例有所删减。...译者注:贝叶斯理论是机器学习中的常青树,不仅衍生了朴素贝叶斯算法,更是支撑起了HPO(超参)方向的一片天! 06 支持向量机 SVM是一种如此流行的机器学习算法,以至于可将其独立分为一类。...12 集成算法 集成算法的主要出发点是综合多个独立训练的弱学习器预测结果,确保最终结果相较于单个学习器而言更为精准和鲁棒。为了最大化集成学习效果,需谨慎考虑基学习器类型和集成方法。...译者注:单就经典机器学习而言(即不考虑深度学习和强化学习等),集成学习才是当前的主流和热点!主流集成学习思想可参考历史推文:一张图介绍机器学习中的集成学习算法。 ?

    1.2K30

    机器学习平台带给QA的挑战

    机器学习平台是一款集数据集、特征工程、模型训练、评估、预测、发布于一体的全流程开发和部署的工作平台。...在谈测试机器学习平台带给QA的挑战之前,先了解一下机器学习平台是什么?...即数据科学家们的日常工作流程有: 问题定义 数据收集 预处理 构造数据集 特征工程 建模、调参 部署、在线验证 循环优化 ---- 机器学习平台的主要业务 简单理解,机器学习平台就是帮助数据科学家工作变得更简单...即机器学习平台主要业务包括(如图2): ? 图2....其它 集成Jupyter Notebook 调度等等 ---- QA面临的挑战 了解了机器学习平台的主要业务功能后,谈谈机器学习平台测试过程中,QA所面临的挑战,以及在实践的所使用的应对方案。 1.

    1.8K10
    领券