首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

你可能没有实现一个正确的atoi函数

= *str) { ret = ret * 10 + *str - '0'; str++; } return ret; } 看起来既简洁又没有什么问题...,输入数值时也似乎能得到正确结果。...实现atoi函数需要注意什么 你可能已经注意到了,实现atoi需要考虑下面这些场景: 输入正负号 开头有空格 转换后的数值超出int的表示范围 出错时返回0与正确转换0的区别 输入非数字 空字符串 现在来看...INT_MIN:INT_MAX; } str++; } /*根据正负号返回正确的结果*/ return negative?...但这些都不是重点,重点是我们在考虑实现atoi函数的时候,需要考虑多种异常场景,这在平常实现其他功能接口的时候也是一样的。 思考 前面的代码有什么不足?你忽略了哪些场景?

2.4K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    在没有 Mimikatz 的情况下操作用户密码

    在渗透测试期间,您可能希望更改用户密码的常见原因有两个: 你有他们的 NT 哈希,但没有他们的明文密码。将他们的密码更改为已知的明文值可以让您访问不能选择 Pass-the-Hash 的服务。...您没有他们的 NT 哈希或明文密码,但您有权修改这些密码。这可以允许横向移动或特权升级。...使用 Windows 重置密码 首要任务是恢复先前密码的 NT 哈希。最简单的方法是使用Mimikatz,尽管我将介绍一些替代方案。...一旦离线,Mimikatz可以在不被发现的情况下使用,但也可以使用Michael Grafnetter的 DSInternals 进行恢复。...很好,但这仍然需要我们能够从 Kerberos 票证中恢复明文密码,除非用户密码较弱,否则这是不可能的。

    2.1K40

    V-3-3 在没有vCenter的情况下

    在使用vSphere客户端登陆到ESXi服务器的时候,由于没有安装vCenter,而发现无法克隆虚拟机。...在有vCenter的情况下,可以创建一个模板虚拟机后,右键直接克隆一台虚拟机。或者将虚拟机转换为模板后,以模板创建虚拟机。...如果没有vCenter而现在要创建多台相同的虚拟机的时候可以使用模板来创建虚拟机。 这里说到一个情况是在既没有VCenter和模板的情况下,如何快速复制多台相同的虚拟机。...进入需要复制的模板虚拟机,选中所有的文件并且右键复制。 ? 在新的文件夹中粘贴。 提示:可以进入ssh界面,通过命令行进行复制。...如此,ESXI中会出现新的虚拟机。 注意:打开新的虚拟机后会出现以下消息,选择I Copied It。并按确定。 ?

    1.1K20

    vAttention:用于在没有Paged Attention的情况下Serving LLM

    挑战和优化:vAttention 解决了在没有 PagedAttention 的情况下实现高效动态内存管理的两个关键挑战。首先,CUDA API 支持的最小物理内存分配粒度为 2MB。...编写正确且高效的GPU kernel对大多数程序员来说是具有挑战性的。 作为Transformer架构的基本构建块,注意力算子在系统和机器学习社区中见证了大量的性能优化创新,这一趋势可能会继续。...此时,R1的虚拟张量有两部分映射到了物理内存上,而R2的虚拟张量有一部分映射到了物理内存上。 (d):R1已经完成了它的任务,但vAttention没有立即回收其内存(延迟回收)。...如果没有,则同步映射所需的页。 0x6.2.2 延迟回收 + 预先分配 我们观察到,在许多情况下,可以避免为新请求分配物理内存。例如,假设请求在迭代中完成,而新请求在迭代中加入运行批次。...0x7.4 内存碎片分析 表8显示了块大小(定义为页中最小的 token 数)以及在最坏情况下因过度分配而可能浪费的物理内存量。最坏情况发生在分配了一个新页但完全未使用的情况下。

    49110

    企业在实施而erp出错的情况下应该如何解决呢?

    重视实施前员工的思想教育和技能培训 ERP的实施和应用对企业来说是一套新生的管理工具,企业的管理和经营必须要从员工的思维方式和传统观念来改变,所以企业必须重视和做好员工的培训和教育工作,并通过培训和教育使企业员工明确...ERP的管理思想,从而提高员工的操作技术水平和管理人员的管理水平。...从项目的实施开始到后期,培训都是贯穿始终的,必须分阶段、分内容、分管理层次和分人员地进行系统的培训。注重使用、有效、科学的手段来提高员工的认识,提高管理理念和技术能力。   ...不少企业高层管理人员尚未认识到这一点:在选择系统时仅由技术主管负责,缺少业务部门用户的参与;项目经理由技术部门的领导担任,高级管理人员、尤其是企业的一把手未能亲自关心负责系统实施。...管理观念的转变还体现在ERP系统实施过程对企业原有的管理思想的调整上;ERP系统带来的不仅仅是一套软件,更重要的是带来了整套先进的管理思想。

    44320

    注意 ansi c 库函数 在多线程时可能出错的问题

    topic=/com.arm.doc.dui0349bc/Chdfgjej.html  在 ARM 库中,函数可能是线程安全的,如下所示:   某些函数从来都不是线程安全的,例如 setlocale()...因此,clock() 是线程安全的,但前提是在初始化库时没有运行任何其他线程。 errno()   errno 是线程安全的。...atexit()   atexit() 维护的退出函数列表是进程全局性的,并且使用锁对其进行保护。 在最坏的情况下,如果多个线程调用 atexit(),则不能保证调用退出函数的顺序。 ...())不是线程安全的,因为它们包含在所有线程之间共享而没有锁定的内部静态状态。...在这种情况下,exit() 在调用 _sys_exit() 之前 先执行清除操作,因此会中断其他线程。  rand(), srand()   这些函数保留全局性且不受保护的内部状态。

    1.8K20

    在高并发的情况下,Redis事务可能会遇到的问题

    图片在高并发的情况下,Redis事务可能会遇到以下问题:1....脏数据问题:由于Redis的事务是乐观锁实现的,多个客户端同时对同一个数据进行操作时可能会出现脏数据问题,即最后生效的操作可能不是最新的值。...阻塞问题:在高并发情况下,如果Redis服务器在执行事务期间发生阻塞,例如执行一个耗时较长的命令,会影响其他等待执行的事务。...数据竞争问题:在高并发情况下,多个客户端同时提交事务,可能会导致事务执行的不确定性和数据竞争问题。 解决办法: 在Redis中,可以使用乐观锁和悲观锁来解决数据竞争问题。...请注意,以上问题都是在Redis的事务场景下可能遇到的问题,并非Redis本身的限制,因此需要根据具体业务场景和需求来选择适当的解决办法。

    73791

    在没有数据的情况下使用贝叶斯定理设计知识驱动模型

    总的来说,我们需要指定4个条件概率,即一个事件发生时另一个事件发生的概率。在我们的例子中,在多云的情况下下雨的概率。因此,证据是多云,变量是雨。...在洒水器关闭的情况下,草地湿润的可能性有多大? P(Wet_grass=1 |Sprinkler=0)= 0.6162 如果洒器停了并且天气是多云的,下雨的可能性有多大?...尽管这种方法似乎是合理的,但通过询问专家可能出现的系统性错误,以及在构建复杂模型时的局限性。 我怎么知道我的因果模型是正确的? 在洒水器的例子中,我们通过个人经验提取领域专家的知识。...虽然我们创建了一个因果关系图,但是很难完全验证因果关系图的有效性和完整性。例如,你可能对概率和图表有不同的看法并且是对的。举个例子,我这样描述:“我在20%的时间里确实看到了雨,没有可见的云。”...对这样一种说法进行争论可能是合理的。相反,也可能同时存在多个真实的知识模型。在这种情况下,您可能需要组合这些概率,或者决定谁是正确的。

    2.2K30

    NeurIPS 2023 | 在没有自回归模型的情况下实现高效图像压缩

    这种方法的一个关键部分是基于超先验的熵模型,用于估计潜在变量的联合概率分布,其中存在一个基本假设:潜在变量元素在空间位置上的概率是相互独立的。...相关性损失的计算 本文提出的相关性损失通过在潜在空间中使用滑动窗口计算得到。...:最后,通过在相关性图上应用 L_2 范数来计算相关性损失,这一损失衡量了模型中潜在变量之间在空间上的解相关程度。...(5) 所示,其中 α 表示相关性损失在损失函数中所占的比例。...实验表明,本文所提出的方法在不修改熵模型和增加推理时间的情况下,显著提高了率失真性能,在性能和计算复杂性之间取得了更好的 trade-off 。

    45710

    谷歌AI在没有语言模型的情况下,实现了最高性能的语音识别

    谷歌AI研究人员正在将计算机视觉应用于声波视觉效果,从而在不使用语言模型的情况下实现最先进的语音识别性能。...研究人员表示,SpecAugment方法不需要额外的数据,可以在不适应底层语言模型的情况下使用。 谷歌AI研究人员Daniel S....Park和William Chan表示,“一个意想不到的结果是,即使没有语言模型的帮助,使用SpecAugment器训练的模型也比之前所有的方法表现得更好。...虽然我们的网络仍然从添加语言模型中获益,但我们的结果表明了训练网络在没有语言模型帮助下可用于实际目的的可能性。” ?...SpecAugment应用于Listen,Attend和Spell网络进行语音识别任务,LibriSpeech960h达到2.6%的单词错误率(WER),它收集了时长约1000小时的英语口语,以及Switchboard300h

    94770

    在没有 try-with-resources 语句的情况下使用 xxx 是什么意思

    在没有使用 try-with-resources 语句的情况下使用 xxx,意味着在代码中没有显式地关闭 xxx对象资源,如果没有使用 try-with-resources,那么在使用xxx对象后,需要手动调用...语句中,可以自动管理资源的关闭。...使用 try-with-resources 语句时,可以在 try 后面紧跟一个或多个资源的声明,这些资源必须实现了 AutoCloseable 或 Closeable 接口。...在 try 代码块执行完毕后,无论是否发生异常,都会自动调用资源的 close() 方法进行关闭。...使用 try-with-resources 可以简化资源释放的代码,并且能够确保资源在使用完毕后得到正确关闭,避免了手动关闭资源可能出现的遗漏或错误。

    4.1K30

    神兵利器 - 在没有任何权限的情况下破解任何 Microsoft Windows 用户密码

    最大的问题与缺乏执行此类操作所需的权限有关。 实际上,通过访客帐户(Microsoft Windows 上最受限制的帐户),您可以破解任何可用本地用户的密码。...PoC 测试场景(使用访客账户) 在 Windows 10 上测试 安装和配置新更新的 Windows 10 虚拟机或物理机。...在我的情况下,完整的 Windows 版本是:1909 (OS Build 18363.778) 以管理员身份登录并让我们创建两个不同的帐户:一个管理员和一个普通用户。两个用户都是本地用户。 /!...默认情况下,域名是%USERDOMAIN%env var 指定的值。...Account lockout threshold 值表示锁定之前可能尝试的次数。 /!\ LockDown Policy 不适用于管理员帐户。

    1.7K30

    在没有技术术语的情况下介绍Adaptive、GBDT、XGboosting等提升算法的原理简介

    假设你正在准备SAT考试,考试分为四个部分:阅读、写作、数学1(没有计算器)、数学2(没有计算器)。为了简单起见,假设每个部分有15个问题需要回答,总共60个问题。...它使用下面的公式来决定它的最终结果。 ? 括号内的所有内容反映了模型给出正确预测的可能性。例如,对于stump 1来说,给出正确预测的概率是错误预测的5倍。 神奇之处在于log部分。...Amy的残差是1-0.67,Tom的残差是0-0.67。在右边,我比较了一个普通树和一个残差树。 ? ? 在一个普通的树中,叶子节点给我们一个最终的类预测,例如,红色或绿色。...但通常我们将max_depth限制在6到8之间,以避免过拟合。Gradientboost不使用树桩,因为它没有使用树来检测困难的样本。它构建树来最小化残差。...当面对大型数据集时,这个过程可能非常耗时。 因此,XGboost又向前推进了一步。它没有使用预估器作为树节点。它构建树来将残差进行分组。就像我之前提到的,相似的样本会有相似的残值。

    89010

    怎么在没有专业UI的情况下设计出一个美观的工业组态界面?

    在目前的工控行业里面,软硬件发展的都比较成熟,工程师们能够独立完成功能,然而在现在竞争日益激烈的情况下,无论是触摸屏还是PC机,因为直观的展示了项目的全貌,软件界面显得愈发重要。...那么怎么在没有专业UI的情况下设计出一个美观的界面呢? 下面分享一下我的设计思路,希望对大家有所帮助。在我看来,组态界面的设计包含:框架、颜色、页面、字体、图标、图形这几个部分。...03 功能切换区域,用不同的功能按钮来展示不同的功能,从而展示界面的逻辑和层次。 此外,部分的界面可能还包含了底部信息,用来添加公司的相关信息等(地址、网址、联系方式等)。...以我的经验来看,当采用工控显示器1920*1080的分辨率时,采用上下结构时,上部尺寸保持在105较好,按钮切换这部分尺寸在60左右,剩余主体窗口的尺寸为975左右。...当采用1680*1050分辨率时,采用上下结构时,上部尺寸保持在100,用户切换尺寸在60左右,剩余主体窗口的尺寸为950左右。

    1.1K10

    尽量减少网站域名在没有启用 CDN 情况下的各种检测、扫描、测速等操作

    今天明月给大家分享个比较可怕的事儿,那就是轻松获取你站点服务器真实 IP 的途径和办法,很多小白站长不知道自己服务器真实 IP 的重要性,因此一些不好的习惯就会暴露你的真实 IP 到网上,从而造成被各种恶意扫描和爬虫抓取骚扰...这个原理其实很简单,就是通过获取你的域名解析记录来侧面获取到你的真是 IP,有不少的第三方代理就可以扫描你的域名来获取到这些数据,不说是百分百的准确吧,至少有 80%的概率可以的,通过明月的分析,这些数据大部分依赖于平时网上各种的所谓...可以看到 Hosting History 里的记录还是非常的丰富的,这里就会有暴露你真实 IP 的可能,通过点击右上角那个“Refresh”刷新几次,收获会更加的精准。...这几乎是一种没有任何成本和技术门槛的手法就可以轻松获取到服务器真实的 IP 了,这也再次说明了给自己的站点加个 CDN 来隐藏真实 IP 的重要性,甚至可以说在没有 CDN 的情况下,尽量的不要去检测自己域名的速度...、SEO 信息查询等等操作,至于那些所谓的交换友链、自动外链的所谓 SEO 插件就更要远离了,基本上明月碰到的没有几个是正常的,总之各位是要小心谨慎了!

    1.1K20

    研究人员开发机器学习算法,使其在没有负面数据的情况下进行分类

    来自RIKEN Center高级智能项目中心(AIP)的研究团队成功开发了一种新的机器学习方法,允许AI在没有“负面数据”的情况下进行分类,这一发现可能会在各种分类任务中得到更广泛的应用。...当使用AI时,这些任务基于机器学习中的“分类技术”, 让计算机使用正负数据的边界进行学习,如“正面”数据将是带有幸福面孔的照片,“负面”数据是带有悲伤面部的照片。...就现实生活中的项目而言,当零售商试图预测谁将购买商品时,它可以轻松地找到已经购买商品的客户的数据(正面数据),但基本上不可能获得没有购买商品的客户的数据(负面数据),因为他们无法获得竞争对手的数据。...另一个例子是应用程序开发人员常见的任务:他们需要预测哪些用户将继续使用应用程序(正面),而哪些停止使用(负面)。...然后他们在“T恤”照片上附上了置信分数。他们发现,如果不访问负面数据,在某些情况下,他们的方法与一起使用正面和负面数据的方法一样好。 Ishida指出,“这一发现可以扩展可以使用分类技术的应用范围。

    80040

    在GAN中通过上下文的复制和粘贴,在没有数据集的情况下生成新内容

    我相信这种可能性将打开数字行业中许多新的有趣应用程序,例如为可能不存在现有数据集的动画或游戏生成虚拟内容。 GAN 生成对抗网络(GAN)是一种生成模型,这意味着它可以生成与训练数据类似的现实输出。...尽管它可以生成数据集中不存在的新面孔,但它不能发明具有新颖特征的全新面孔。您只能期望它以新的方式结合模型已经知道的内容。 因此,如果我们只想生成法线脸,就没有问题。...但是,如果我们想要眉毛浓密或第三只眼的脸怎么办?GAN模型无法生成此模型,因为在训练数据中没有带有浓密眉毛或第三只眼睛的样本。...快速的解决方案是简单地使用照片编辑工具编辑生成的人脸,但是如果我们要生成大量像这样的图像,这是不可行的。因此,GAN模型将更适合该问题,但是当没有现有数据集时,我们如何使GAN生成所需的图像?...例如,假设我们有一个在马匹上训练过的StyleGAN模型,并且我们想重写该模型以将头盔戴在马匹上。我们将所需的特征头盔表示为V ‘,将上下文中的马头表示为K’。

    1.6K10
    领券