页面可视化搭建, 是一个历久弥新的话题. 更广义上讲, 页面是 GUI 的一部分, GUI 的拖拉生成在各种开发工具上很常见, 如 Android Studio, Xcode, Visual Studio 等. 前端页面早在十几年前就能用 Dreamweaver, Frontpage 等工具可视化搭建出来.
1. D3 Stars: 46561, Forks: 12465 D3 是一个JavaScript数据可视化库用于HTML和SVG。它旨在将数据带入生活,强调Web标准,将强大的可视化技术与数据驱动的
本文来自作者在GitChat(ID:GitChat_Club)上的精彩分享,CSDN独家合作发布。 随着DT时代的到来,传统的统计图表很难对复杂数据进行直观地展示。这几年数据可视化作为一个新研究领域也变得越来越火。成功的可视化,如果做得漂亮,虽表面简单却富含深意,可以让观测者一眼就能洞察事实并产生新的理解。可视化(visualization)和可视效果(visual)两个词是等价的,表示所有结构化的信息表现方式,包括图形、图表、示意图、地图、故事情节图以及不是很正式的结构化插图。 基本的可视化展现方式,
3年前我开发了一款零代码搭建平台 H5-Dooring, 主要目的是想用更低的成本, 更快的效率, 上线 web 页面(其实是不想写重复的代码了,写麻了). 好在陆陆续续折腾了3年, 目前已经可以满足基本的页面设计和搭建能力, 并能快速上线页面.
模板和硬编码HTML都是用于生成网页内容的方法,只不过它们在不同的场景下有各自的优势和用途。模板引擎通常用于动态网页的开发,可以将数据和结构分离,使得页面内容可以根据不同的数据动态生成。硬编码HTM对于简单的静态页面,直接硬编码HTML可能更加简单和直接。那么这些具体的优缺点可以看看下面的文章。
本文介绍了大数据可视化分析工具,列举了39种常用工具,并给出了每种工具的优缺点。这些工具涵盖了各种领域,如商业智能、数据挖掘、数据可视化等。
几个月前开源的H5页面制作平台H5-Dooring 收到了很多热心的反馈和交流, 顺着笔者之前的规划, 我们又做了一款可视化大屏编辑器V6.Dooring. 接下来笔者就来带大家一起看看我们的方案设计和技术实现.
由于工作的需要,经常需要进行可视化展示,除了一些常用的BI工具,我也会使用python对数据进行可视化。
各个互联网公司通过大量的用户数据、信息进行统计分析,而这些大量繁杂的数据在经过可视化工具处理后,就能以图形化的形式展现在用户面前,清晰直观。随着各种数据的增加,这种可视化工具越来越得到开发者们的欢迎。 下面推荐30款可视化工具供大家选择和使用。 1.iCharts iCharts 提供了一个用于创建并呈现引人注目图表的托管解决方案。有许多不同种类的图表可供选择,每种类型都完全可定制,以适合网站的主题。iCharts 有交互元素,可以从Google Doc、Excel 表单和其他来源中获取
最近沉迷于github,无法自拔,看到各种各样新奇又实用的第三方库。网络上有很多python库的排名、汇总,但总觉得不够具体生动。
本文盘点了12款常用的Python数据可视化库,挑选适合自己业务的那一款吧!Python有很多数据可视化库,这些数据可视化库主要分为交互式可视化库和探索式可视化库。
原文网址:https://blog.profitbricks.com/39-data-visualization-tools-for-big-data/
数据可视化无处不在,而且比以前任何时候都重要。无论是在行政演示中为数据点创建一个可视化进程,还是用可视化概念来细分客户,数据可视化都显得尤为重要。以前的工具的基本不能处理大数据。本文将推荐39个可用于处理大数据的可视化工具(排名不分先后)。其中许多工具是开源的,能够共同使用或嵌入已经设计好的应用程序中使用,例如JavaScript,JSON,SVG,Python,HTML5,甚至有些工具不需要任何编程语言基础。其他的则是商业智能平台,能够进行复杂的数据分析并生产报告,并配有多种方式实现数据可视化。无论你是需
每天上班必须做的一件事情,就是打开我们全球最大的程序员交友社区GitHub,因为这上面有太多开源的宝贝了,每天都乐此不疲,深耕于此,当然也收获了很多有用的东西,写出来分享一下。
工欲善其事,必先利其器。好的工具可以大大提升你的工作效率,并获得身边人的羡慕和赞赏。今天,我们就来向小伙伴们分享一大波非常实用的工具,武装你的大脑。 ▲图表类 iCharts 简介:各种主题的开放图
在开源世界中,某些库为数据可视化提供了许多可能性,包括图形或网络表示。其他库仅专注于网络图表示。通常,这些库比通用库提供更多的功能。您还将找到商业图形可视化库。商业图书馆的优势在于可以保证持续的技术支持和先进的性能。
大家普遍第一次接触到的Python数据可视化库基本上都是Matplotlib。Python还有很多数据可视化库,本文我将简单介绍12款常用的Python数据可视化库,并在文末送出一本数据可视化书籍!
人们常说,数据是组织的生命线。然而,解析这些数据并有效地使用仍然是一个挑战。 大数据可视化 假设拥有一个巨大的金矿,但不能使用。那么,作为一个金矿的拥有者有什么用呢?大数据的情况与之相似。专家认为,如
微软在Ignite2018关于PowerBI的演示中使用了一个很猛的自定义可视化,先来看看效果:
开头先说一件重要的事情,最近联合几个小伙伴(有在校研究生博士以及工作的),共同建立了一个秋招互助交流群,希望在算法岗越来越积累的时期,帮助大家共同进步,多多交流成长,一起拿到理想的offer
FiveThirtyEight网站,也称作538,是一个专注于民意调查分析,政治,经济与体育的博客。网站于2008年3月7日建立,其名称来源于美国选举人团中选举人的数量,该网站集政治(Politics)、运动(Sports)、科学与健康(Science&Health)、经济(Economics)、文化(Culture)于一身,涉及面非常之广。作为可视化练习教程,我们关注的是其优秀的可视化作品。今天的推文就是对其中一副可视化作品进行仿制。如下所示(https://fivethirtyeight.com/features/fandango-movies-ratings/):
目前很多企业或多或少的面临“信息孤岛”问题,各个系统平台之间的数据无法实现互通共享,难以实现一体化的数据分析和实时呈现。
如果不抽象,当搭建项目做到后期可能会出现 API 杂乱,难以维护的问题;做到一半甚至会怀疑为什么需要一个搭建框架,怀疑把框架去掉会不会效率更高;在后期发现不能自然的水平拓展到仪表盘、大屏、表单搭建场景等。
类似开发WinForm的方式,使用C#开发Android和IOS的移动应用?听起来感觉不可思议,但是实际上确实很强大。
从数据获得信息的最佳方式之一是,通过视觉化方式,快速抓住要点信息。另外,通过视觉化呈现数据,也揭示了令人惊奇的模式和观察结果,是不可能通过简单统计就能显而易见看到的模式和结论。
大数据文摘作品,欢迎个人转发朋友圈;其他机构、自媒体转载,务必后台留言,申请授权。 荐文专家招募: 如果你是业界专家, 如果你的工作和数据有关, 更重要的是,如果你能够找到好文章并愿意与读者分享, 请点击文末“阅读原文”,加入我们! 荐文一旦采纳,我们会在文章开头致谢并宣传。 荐文专家 康欣:博士,多年从事图像及数据处理和分析、计算机视觉、模式识别、机器学习、增强现实等领域的技术研究和创新应用,现为西门子中国研究院高级研究员。希望借此平台,与大数据分析爱好者以及专家学者交流、合作。 编译|陆兴海 校对|W
水利兴,五谷丰。水利作为国民经济稳定和谐的重要部分,不仅有防洪减灾、农业灌溉、城市供水调水、渔业外贸、旅游航运、生态环境等综合应用,水电资源也是至关重要的可持续能源之一。大坝与水库、水电站等水利枢纽相辅相成稳定着城市发展。而随着信息化的发展,结合物联网、5G、大数据等新兴技术形式的智慧水电站、智慧大坝应用,也给传统水利行业提供更大的价值体现,提升产业全面感知、共享整合、智慧管理。
有幸看到了这篇关于数据可视化学习的指导文章,由于原作链接访问异常,只得从百度快照中看到原文,所以这里搬运过来,特此声明本文系【转载】,在此感谢原作者,以下为原文正文(略有删减)。
在开源世界中,某些库为数据可视化提供了许多可能性,包括图形或网络表示。其他库仅专注于网络图表示。通常,这些库比通用库提供更多的功能。
导读:过去几年,对数据以及数据分析的关注可谓达到了一个新的高度。如今,数据和信息已经成为一种可以带来绝妙视觉观感的工具。曾经简单的图表和散点图,现在已经成了数据艺术中复杂并且极具创造力的一部分,美到甚至可以用来作为墙饰。
Python的使用频率和范围越来越大,在一些开发工作中由于需要可视化的图形界面,常常需要进行图形用户界面(Graphic User Interface, GUI)开发。例如,目前最火热的大模型应用,常常是以一个网页界面进行操作和展示,从而免去了控制台或接口操作的复杂性。因此本文总结记录了我接触了解过的GUI开发相关工具和依赖库。
数据可视化到底是什么?需要具备什么样的能力?工作内容应该有哪些?其实数据本身没有意义,只有对实体行为产生影响时才成为信息。
大数据时代,需要工具实现数据可视化,需要倚仗大数据可视化工具,这些工具中不乏有适用于Flash、HTML5、NET、Java、Flex等平台的,也不乏有适用于常规图表报表、金融图表、工控图表、甘特图、流程图、数据透视表、OLAP多维分析等图表报表开发的。
俗话说的好:工欲善其事,必先利其器!一款好的工具可以让你事半功倍,尤其是在大数据时代,更需要强有力的工具通过使数据有意义的方式实现数据可视化,还有数据的可交互性;我们还需要跨学科的团队,而不是单个数据
在数据可视化的研究热潮中,如何让数据生动呈现,成了一个具有挑战性的任务,随之也出现了大量的可视化软件。相对于其他商业可视化软件,Python是开源且免费的,而且具有易上手、效果好的优点。 大家普遍第一次接触到的Python数据可视化库基本上都是Matplotlib。Python还有很多数据可视化库,本文盘点了12款常用的Python数据可视化库,挑选适合自己业务的那一款吧! 深入学习Python商业数据可视化技术,推荐阅读《Python商业数据可视化实战》。 ▼ Python有很多数据可视化库,这些数据可
过去几年,对数据以及数据分析的关注可谓达到了一个新的高度。如今,数据和信息已经成为一种可以带来绝妙视觉观感的工具。曾经简单的图表和散点图,现在已经成了数据艺术中复杂并且极具创造力的一部分,美到甚至可以用来作为墙饰。
在数据科学领域,数据可视化无疑是当今的首要词汇。无论想分析哪些数据,进行数据可视化似乎都是必要的步骤。但是很多人没有特定的数据可视化概念,也不知道如何实现它。所以,今天将带您了解数据可视化的定义,概念,实现过程和工具。
star:91.5k 官网:https://d3js.org/ GitHub地址:https://github.com/mbostock/d3
❖ Excel:Excel作为一个入门级工具,是快速分析数据的理想工具,也能创建供内部使用的数据图,但是Excel在颜色、线条和样式上课选择的范围有限,这也意味着用Excel很难制作出能符合专业出版物和网站需要的数据图。
很多公司做网站都会用到cms系统,其中的pageadmin cms是用户最多的,这个系统有一个很好的功能,可视化编辑,下面讲解一下。
最近有客户咨询我们三维可视化编辑器,说看到我们三维可视化编辑器做的案例,也想实现自己水厂净水处理流程这块的可视化展示。想通过这种真实的三维可视化展示,进行线上销售,以便成交更多的客户,减少疫情对自己的影响。通过沟通交流,客户提出了几个难题,想让我们根据他们的水厂场景图片,做一些三维可视化场景的demo。客户把具体问题难点列了出来如下:
来源:DataCastle数据城堡(ID:DataCastle2016)、大数据分析和人工智能(ID:datakong)
首先,第一部分是项目背景及需求分析。我们的项目背景是数字医疗场景。数字医疗是一个信息技术与医疗知识相结合,作为现代医药发展趋势的领域,对于实现精准医疗和高效医疗具有重大的意义。我们所合作的苏州医朵云健康股份有限公司,它是一家向患者、医生和医疗机构提供智慧医疗和互联网服务以及数字医疗产品的企业。他与恒瑞医药合作开展了肿瘤产品线的患者随访项目,沉淀了百万级的真实患者数据,涵盖了他们所研发的四种药物。那么对于这样一个数字医疗的问题,它的常规需求主要包括患者数据的日常管理及实现对于患肿瘤患者相关数据的一些跟踪和记录,以及对于这些记录下来的随访数据相关的分析需求。针对这样两个需求,我们小组基于医朵云所提供的随访数据,力求建立一个针对患者数据的管理和分析体系,关注患者用药之后出现不良反应的程度以及与他们的停药和用药状态之间的关系服务,希望得到的结果能够服务于药物副作用的研究,并进一步提供对于临床用药的指导。
总第74篇 本篇要点: 01、数据可视化是什么 02、数据可视化的一般流程 03、常见的数据种类 04、通过可视化你想表达什么信息 05、选择具体的可视化形式 06、图表设计原则 07、常用的可视化工具 01|数据可视化是什么: 数据可视化主要旨在借助于图形化手段,清晰有效地传达与沟通信息(来源于百度百科)。也就是说可视化的存在是为了帮助我们更好的去传递信息。 02|数据可视化的一般流程: 首先我们需要对我们现有的数据进行分析,得出自己的结论,明确要表达的信息和主题(即你通过图表要说明什么问题)。然后
在数据可视化领域,仪表板是一种非常有用的工具,它能够将数据以易于理解和交互的方式呈现给用户。Plotly Dash 是一个基于 Python 的开源框架,可以帮助你快速而灵活地构建交互式仪表板。本文将介绍使用 Plotly Dash 创建仪表板的步骤和一些技巧,并附上代码实例来演示每个步骤。
又是一月结束,打工人准时准点的汇报工作如期和大家见面啦。提到汇报,必不可少的一部分就是数据的汇总、分析。
领取专属 10元无门槛券
手把手带您无忧上云