首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

各向异性扩散是如何依赖于时间的?

各向异性扩散是指物质在不同方向上扩散速率不同的现象。它可以依赖于时间,具体表现为扩散速率随时间变化而变化。

在时间依赖性方面,各向异性扩散可以表现为以下几种情况:

  1. 时间无关:物质在扩散过程中,不受时间的影响,扩散速率在不同时间段保持不变。这种情况在某些均匀介质中的扩散过程中可能出现。
  2. 时间相关:物质在扩散过程中,扩散速率随时间的推移而发生变化。这种情况可能是由于介质中存在时间相关的扩散机制,例如温度变化、浓度梯度变化等。
  3. 时间依赖:物质在扩散过程中,扩散速率受到时间的显著影响,扩散速率随时间的变化呈现出明显的趋势。这种情况可能是由于介质中存在时间依赖的扩散机制,例如孔隙率的变化、介质结构的演化等。

各向异性扩散的时间依赖性对于许多领域都具有重要意义,例如材料科学、生物学、地球科学等。在材料科学中,了解各向异性扩散的时间依赖性可以帮助研究人员设计更有效的材料,优化材料的性能。在生物学中,了解各向异性扩散的时间依赖性可以帮助研究人员理解细胞内物质传输的机制,揭示生物体内各种生物过程的本质。

腾讯云相关产品和产品介绍链接地址:

  • 云计算产品:https://cloud.tencent.com/product
  • 人工智能产品:https://cloud.tencent.com/product/ai
  • 物联网产品:https://cloud.tencent.com/product/iotexplorer
  • 移动开发产品:https://cloud.tencent.com/product/mobdev
  • 存储产品:https://cloud.tencent.com/product/cos
  • 区块链产品:https://cloud.tencent.com/product/baas
  • 元宇宙产品:https://cloud.tencent.com/product/mu
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

中青年人脑白质的年龄效应和性别差异:DTI、NODDI 和 q 空间研究

本文使用先进的扩散磁共振成像(dMRI)研究了中青年人脑白质的微观结构变化。使用混合扩散成像(HYDI)获得多shell扩散加权数据。HYDI方法用途广泛,并使用扩散张量成像(DTI)、神经突定向扩散与密度成像(NODDI)和q空间成像方法分析数据。本研究包括24名女性和23名男性被试,年龄在18至55岁之间。在整个大脑的48个白质感兴趣区域(ROI)中使用最小二乘线性回归测试了年龄和性别对扩散指标的影响,并对ROI进行了多重比较校正。在这项研究中,投射到海马或大脑皮层的白质是对大脑衰老最敏感的区域。具体来说,在这个从青年到中年的队列中,年龄效应与白质纤维更分散有关,而组织限制和轴突内体积分数保持相对稳定。NODDI的纤维弥散指数对老化表现出最显著的敏感性。此外,这一年龄队列中DTI指数的变化主要与纤维弥散指数相关,而不是与NODDI的细胞内体积分数或q空间测量值相关。虽然男性和女性的衰老率没有差异,但男性的轴突内体积分数往往高于女性。这项研究表明,使用HYDI采集和NODDI分区建模的高级dMRI可以阐明对年龄和性别敏感的微观结构变化。最后,本研究深入了解了DTI扩散指标与NODDI模型q空间成像的高级扩散指标之间的关系。

02
  • PNAS:子宫内妊娠中期和晚期人脑白质通路的发展

    摘要:在人类妊娠的中晚期,神经快速发育是由包括神经元迁移、细胞组织、皮层分层和髓鞘形成等基本过程所支撑的。在这个时期,白质的生长和成熟为一个高效的结构连接网络奠定了基础。关于健康人类胎儿大脑发育轨迹的详细知识有限,部分原因是在这一人群中获取高质量的MRI数据存在固有的挑战。在这里,我们使用最先进的高分辨率多壳运动校正扩散加权MRI(dMRI),作为正在发展的人类连接体项目(dHCP)的一部分,来表征113个22 - 37周妊娠的胎儿的白质微结构在子宫内的成熟。我们定义了5个主要的白质束,并利用传统的扩散张量模型和多壳多组织模型对其微观结构特征进行了表征。与关联束相比,我们在丘脑皮层纤维中发现了独特的成熟趋势,并在胼胝体的特定部位发现了不同的成熟趋势。虽然胼胝体压部的部分各向异性呈线性增长,但其他大部分白质束的部分各向异性呈复杂的非线性趋势,在妊娠早期部分各向异性先是下降,随后又增加。后者特别值得关注,因为它与之前在子宫外早产儿中描述的趋势明显不同,这表明这种正常的胎儿数据可以为了解与早产相关的神经发育损伤的连接性异常提供重要的见解。 1.简述 在人类胎儿中,大脑主要白质通路发展在妊娠前第二第三阶段极其迅速而有明显分层顺序。这些白质连接的结构和完整性在支持和协调功能网络中有不可或缺的作用。目前对这些过程的了解很大程度上依赖于死亡后的数据。胎儿MRI可以捕获全脑在其生存和功能状态下的发育,从而为了解正常生长提供重要的额外信息。特别是白质,这可以包括发展的远程连接和特定区域的轨迹的详细的调查。 早产儿认知和运动问题的高患病率强调了更好地理解这一关键时期的重要性。在这些婴儿中,早期暴露于子宫外环境可能会影响后来的神经发育轨迹。多项证据表明,白质异常是主要的病理,进一步表明,这种特殊的组织类型既处于发展的关键阶段,又易受外部影响。 在这种情况下,表征子宫内白质成熟具有重要的规范性参考作用。 由于难以从这一人群中获取固有的成像数据,例如处理与母质组织和胎儿持续运动相关的图像伪影,因此使用MRI等非侵入性方法对胎儿白质束的体内发育进行精确表征具有挑战性。 还需要招募足够多的受试者来解释人口异质性和年龄效应。以往的研究也很难概括为典型发育的代表,因为它们包括了脑异常或子宫外早产儿的临床人群。所有现有的研究都使用扩散张量成像(DTI)来描述微观结构的变化;然而,结果并不一致。虽然一些研究报道了DTI指标与胎龄(GA)之间的线性关系,其他研究拟合了非线性模型,其他研究仍未发现明显的年龄依赖性。 在这项研究中,我们利用最先进的高角度分辨率多壳扩散加权MRI (dMRI)采集技术来解决DTI的局限性和胎儿成像的挑战,以及专门为研究具有挑战性的胎儿数据而开发的重建和处理管道,这是发展中的人类连接体项目(dHCP)的一部分(http://www.developingconnectome. org)。我们应用新开发和优化的方法,在一个大队列的从22到37周的113个健康胎儿。 通过这些方法,我们能够描绘出特定的白质束,包括左右皮质脊髓束(CST)(一个投射束的例子),视辐射束(ORs)和下纵束(ILF)(联合束的例子),以及胼胝体(CC)(连合束的例子)。选择这些特定束是因为已知它们的发育轨迹存在差异,而且它们的损伤或异常发育与神经发育障碍或智力残疾的病理生理学有关。这项研究是对人类妊娠中后期白质微结构成熟变化的最大规模和最详细的宫内特征研究,为我们提高对神经发育障碍的神经病理生理学基础的理解提供了宝贵的资源。 2. 结果 2.1 胎儿队列中全脑发育和FA的规范趋势 胎儿dMRI数据收集于151例(22岁至38周)的dHCP。每个受试者采用dHCP预处理流水线进行处理,包括考虑胎儿运动不可预测、回声平面成像几何畸变、胎儿位置差异引起的信号强度不均匀性等具体措施。胎儿头部较小,与线圈距离较远,信噪比较差。在接受人工评估的151名受试者中,38名受试者因采集过程中过度运动而失败。 为了验证数据集显示了正常的容量增长预期趋势,我们计算了每个受试者的全脑容量和胎龄之间的关系。与现有的文献一致,我们发现在整个研究期间,体积呈强的线性增长。全脑平均FA与GA呈相似的正线性关系(图1C)。

    03

    利用机器学习研究脑卒中早期皮质运动系统的结构-功能关系

    ​背景:脑卒中后的运动结果可以通过下行皮质运动通路的结构和功能生物标志物来预测,通常分别通过磁共振成像和经颅磁刺激来测量。然而,完整的皮质运动功能的确切结构决定因素尚不清楚。识别皮质运动通路的结构和功能联系可以为脑卒中后运动损伤的机制提供有价值的见解。这项研究使用监督机器学习来分类上肢运动诱发电位状态,使用卒中早期获得的MRI测量。方法:回顾性分析脑卒中后1周内上肢中重度无力患者91例(女性49例,年龄35 ~ 97岁)的资料。使用T1和弥散加权MRI的指标训练支持向量机分类器来分类运动诱发电位状态,使用经

    02

    Brain|白质束和执行功能:对因果性和相关性证据的回顾

    执行功能是涉及工作记忆/更新、设置转移和抑制等能力的高级认知过程。这些复杂的认知功能是由广泛分布的认知网络之间的相互作用实现的,由白质束支持。执行功能障碍在影响白质的神经系统疾病中很常见;然而,特定的神经束是否对正常的执行功能至关重要尚不清楚。我们回顾了在胶质瘤清醒手术中使用直接电刺激、基于体素、基于束和束的病变症状映射和弥散张量成像,以探索健康和受损成人白质束完整性和执行功能之间的关系的因果和相关证据。胼胝体始终与所有的执行过程相关,特别是它的前节段。因果关系和相关性证据都显示,上纵束显著支持执行功能,特别是工作记忆。更具体地说,强有力的证据表明,上纵束的第二分支对所有的执行功能都至关重要,特别是对灵活性。整体结果显示,语言任务的左侧偏侧化,而具有视觉需求的执行任务的右侧偏侧化。额束可能支持执行功能,然而,需要更多的证据来阐明它参与执行任务是否超出了语言的控制。越来越多的证据表明,连接皮质和皮层下灰质区域的右侧束网络支持评估反应抑制任务的执行,一些表明右丘脑前辐射的作用。最后,相关证据表明扣带束在执行功能中发挥了作用,特别是在评估抑制的任务中。我们根据目前关于这些神经束的功能作用的知识、对支持执行功能的大脑网络的描述以及对脑肿瘤患者的临床意义来讨论这些发现。

    01

    SceneKit_入门08_材质

    SceneKit_入门01_旋转人物 SceneKit_入门02_如何创建工程 SceneKit_入门03_节点 SceneKit_入门04_灯光 SceneKit_入门05_照相机 SceneKit_入门06_行为动画 SceneKit_入门07_几何体 SceneKit_入门08_材质 SceneKit_入门09_物理身体 SceneKit_入门10_物理世界 SceneKit_入门11_粒子系统 SceneKit_入门12_物理行为 SceneKit_入门13_骨骼动画 SceneKit_中级01_模型之间的过渡动画 SceneKit_中级02_SCNView 详细讲解 SceneKit_中级03_切换照相机视角 SceneKit_中级04_约束的使用 SceneKit_中级05_力的使用 SceneKit_中级06_场景的切换 SceneKit_中级07_动态修改属性 SceneKit_中级08_阴影详解 SceneKit_中级09_碰撞检测 SceneKit_中级10_滤镜效果制作 SceneKit_中级11_动画事件 SceneKit_高级01_GLSL SceneKit_高级02_粒子系统深入研究 SceneKit_高级03_自定义力 SceneKit_高级04_自定义场景过渡效果 SceneKit_高级05 检测手势点击到节点 SceneKit_高级06_加载顶点、纹理、法线坐标 SceneKit_高级07_SCNProgram用法探究 SceneKit_高级08_天空盒子制作 SceneKit_高级09_雾效果 SceneKit_大神01_掉落的文字 SceneKit_大神02_弹幕来袭 SceneKit_大神03_navigationbar上的3D文字

    04

    NC:儿童的利手性与大脑功能连接模式之间的联系

    利手性在生命早期就已经发展起来了,但与之相关的大脑结构和功能连接模式仍然不清楚。在这里,我们调查了在青少年大脑认知发展(ABCD)研究中,9-10岁儿童的利手性和大脑连接偏侧化之间的关系。与右撇子相比,左撇子左手运动区整体功能连接密度增加,右侧运动区整体功能连接密度降低。基于功能连接计算的利手指数为左利手性和右利手性提供了更明显的区别。在单模态感觉运动皮层、跨模态皮层和小脑中,手-运动功能连接的偏侧化随利手性的变化而变化(P < 0.001),并在发现和复制子样本中的所有感兴趣区域复制。在这里,我们展示了在左利手性、右利手性和混合利手性儿童的结构连接、大脑形态测量和皮质髓磷脂没有差异的情况下,利手性和功能连接模式的偏侧化之间的强关联。

    01

    【Cell】有关生物大分子凝聚体以及液液相分离的知识汇总(四)

    显然,细胞内凝聚物的物质性质可以有很大的变化。这些结构可以在连续体上呈现出高度流动和液态,也可以更粘稠、粘弹性或多孔固体或凝胶。这些变化的物质状态可能是由于凝聚过程中涉及的特定分子组分,以及液滴的时间和成熟度以及淬灭深度,即系统在两相范围内的深度所导致的。RNA的存在—无论是特定的还是非特定序列—都可以影响液滴的物质性质;然而,RNA是使液滴流动化还是固化,这取决于具体的条件和环境,可能是由于价态和静电效应的贡献。在几个环境中,已经证明,随着时间的推移,或者在促进稳定蛋白质相互作用的突变或阻止蛋白质与RNA结合的能力的突变下,液滴变得更像固体。此外,在更像凝胶的状态下,固态是否可逆是需要考虑的一个重要特性,因为不可逆性对生理学和病理学的可能影响非常重要。尽管关于可以在重组系统中检测到的物理状态的描述越来越多,但某一特定物质状态在细胞中的实际功能仍然不清楚。特定的粘度或粘弹性在进化过程中被选择的程度,或者是凝聚成分的紧急性质,并不一定为结构的功能调整,这还不清楚。因此,仍然很重要的是要表征和操纵液态或凝胶状的隔室的物质状态,最终的目标是理解物质状态与功能是否以及如何相关。

    01

    基于MRI医学图像的脑肿瘤分级

    本文对近年来脑磁共振(MR)图像分割和肿瘤分级分类技术进行概述。文章强调了早期发现脑肿瘤及其分级的必要性。在磁共振成像(MRI)中,肿瘤可能看起来很清楚,但医生需要对肿瘤区域进行量化,以便进一步治疗。数字图像处理方法和机器学习有助于医生进一步诊断、治疗、手术前后的决策,从而发挥放射科医生和计算机数据处理之间的协同作用。本文旨在回顾以胶质瘤(包括星形细胞瘤)为靶点的肿瘤患者的脑部MR图像分割和分类的最新进展。阐述了用于肿瘤特征提取和分级的方法,这些方法可以整合到标准临床成像协议中。最后,对该技术的现状、未来发展和趋势进行了评估。本文发表在Biomedical Signal Processing and Control杂志。

    03

    DCP:一款用于弥散磁共振成像连接组学的工具箱

    摘要:由弥散磁共振成像(dMRI)衍生的大脑结构网络反映了大脑区域之间的白质连接,可以定量描述整个大脑的解剖连接模式。结构性脑连接组的发展导致了大量dMRI处理包和网络分析工具箱的出现。然而,基于dMRI数据的全自动网络分析仍然具有挑战性。在这项研究中,我们开发了一个名为“扩散连接组管道”(DCP)的跨平台MATLAB工具箱,用于自动构建大脑结构网络并计算网络的拓扑属性。该工具箱集成了一些开发的软件包,包括 FSL、Diffusion Toolkit、SPM、Camino、MRtrix3和MRIcron。它可以处理从任意数量的参与者那里收集的原始dMRI数据,并且还与来自HCP和英国生物样本库等公共数据集的预处理文件兼容。此外,友好的图形用户界面允许用户配置他们的处理管道,而无需任何编程。为了证明DCP的能力和有效性,使用DCP进行了两次测试。结果表明,DCP可以重现我们之前研究的发现。但是,DCP存在一些局限性,例如依赖 MATLAB 并且无法修复基于度量的加权网络。尽管存在这些局限性,但总体而言,DCP软件为白质网络构建和分析提供了标准化的全自动计算工作流程,有利于推进未来人脑连接组学应用研究。

    01

    发育中的大脑结构和功能连接体指纹

    在成熟的大脑中,大脑连接的结构和功能指纹可以用来识别个体的独特性。然而,使某一特定大脑区别于其他大脑的特征是否在出生时就已经存在仍不得而知。本研究利用发育中的人类连接组计划(Human Connectome Project, dHCP)的神经影像数据,对早产儿围产期进行两次扫描,以评估发育中的脑指纹。我们发现,62%的参与者可以通过后来的结构连接组与从较早时间点获得的初始连接矩阵的一致性来识别。相反,同一被试在不同时间点的功能连接体之间的相似性较低。只有10%的参与者在功能连接体中表现出更大的自相似性。这些结果表明,结构连接在生命早期更稳定,可以代表个体的潜在连接组指纹:当新生儿必须快速获得新技能以适应新环境时,一个相对稳定的结构连接组似乎支持功能连接组的变化。

    02

    利用“分而治之”的对比学习方法来进行大规模细胞表征学习的研究

    今天为大家介绍的是来自清华研究大学团队的一篇论文。单细胞RNA测序(scRNA-seq)数据是理解“生命之语”的强大工具,能为各种生物医学任务提供新见解。近来,大规模语言模型(LLMs)开始用于细胞表征学习。但现有基于BERT架构的细胞表征学习方法存在问题,它们产生的嵌入空间不均匀,导致语义表达效率不高。对比学习通过均匀分布嵌入来解决这个问题。然而,对比学习中更大的批量大小能带来更好的表征,但scRNA-seq数据的高维性和LLMs的大参数量限制了其实际应用。为解决这个问题,作者提出了一种新颖的“分而治之”对比学习方法,它能够解耦批量大小和GPU内存大小的关系,用于细胞表征学习。基于这种方法,作者介绍了单细胞语言模型(CellLM),这是一个大规模的细胞表征学习模型,能够处理包含成千上万基因的高维scRNA-seq数据。CellLM拥有超过5000万个参数,利用200万个scRNA-seq数据进行训练,它是首次尝试从正常细胞和癌细胞中学习细胞语言模型。CellLM在所有评估的下游任务中都达到了新的最先进水平。

    01
    领券