首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

数据是什么意思?数据哪些价值?

,庞大的数据保存就是非常麻烦的问题,数据除了可以保存在各种存储硬件上面之外,现在还引入了数据的概念,那么数据是什么意思?...数据哪些价值? 数据是什么意思? 数据一开始是由各种大数据厂商提出来的,大家都知道现在数据量是非常庞大的,无论是个人数据还是企业数据都是很重要的,很多人想知道数据是什么意思?...数据是专门为不同种类数据存储引入的新概念,也就是大家常说的hub集群,对于数据量比较庞大的企业来说,可以进行各种不同种类的存储。 数据哪些价值?...企业中的数据都是属于大数据数据的价值之一就是将企业中不同种类的数据汇总在一起,为企业详细的进行数据分类,从而保证以后更加方便的查看,数据的价值之二就是数据分析,不需要预定义的模型就可以直接在数据湖里面进行数据分析...相信大家看了上面的文章内容已经知道数据是什么意思了,数据的应用还是比较广泛的,在很多中小型公司中都会经常使用到,如果大家对于数据这方面有兴趣的话,可以前往我们网站浏览更加相关文章内容哦。

81130

COS 数据最佳实践:基于 Serverless 架构的方案

这篇文章就数据管道为大家详细解答关于 COS 数据结合 Serverless 架构的方案。...传统数据架构分与出两部分,在上图链路中以数据存储为轴心,数据获取与数据处理其实是部分,数据分析和数据投递其实算是数据部分。...总结来看,整体数据链路中定制化程度最高,使用成本及代价最大的其实是数据部分(指数据获取和前的数据处理)。这块内容往往也是实现的数据架构比较核心的数据连接。...03 COS + Serverless 数据解决方案 COS + Serverless 架构整体能力点及方案如下图所示,相关解决方案覆盖数据数据数据处理三大能力点,通过 Serverless...化封装为数据数据提供更多能力拓展。

1.8K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于Apache Hudi 的CDC数据

    CDC数据方法 基于CDC数据,这个架构非常简单。...下图是典型CDC的链路。上面的链路是大部分公司采取的链路,前面CDC的数据先通过CDC工具导入Kafka或者Pulsar,再通过Flink或者是Spark流式消费写到Hudi里。...这是阿里云数据库OLAP团队的CDC链路,因为我们我们做Spark的团队,所以我们采用的Spark Streaming链路。...整个链路也分为两个部分:首先有一个全量同步作业,会通过Spark做一次全量数据拉取,这里如果有从库可以直连从库做一次全量同步,避免对主库的影响,然后写到Hudi。...上游是的变化事件流,对上可以支持各种各样的数据引擎,比如presto、Spark以及云上产品;另外可以利用Hudi的增量拉取能力借助Spark、Hive、Flink构建派生表。

    1.1K10

    基于Apache Hudi 的CDC数据

    02 CDC数据方法 基于CDC数据,这个架构非常简单。...下图是典型CDC的链路。上面的链路是大部分公司采取的链路,前面CDC的数据先通过CDC工具导入Kafka或者Pulsar,再通过Flink或者是Spark流式消费写到Hudi里。...这是阿里云数据库OLAP团队的CDC链路,因为我们我们做Spark的团队,所以我们采用的Spark Streaming链路。...整个链路也分为两个部分:首先有一个全量同步作业,会通过Spark做一次全量数据拉取,这里如果有从库可以直连从库做一次全量同步,避免对主库的影响,然后写到Hudi。...上游是的变化事件流,对上可以支持各种各样的数据引擎,比如presto、Spark以及云上产品;另外可以利用Hudi的增量拉取能力借助Spark、Hive、Flink构建派生表。

    1.7K30

    基于Flink CDC打通数据实时

    照片拍摄于2014年夏,北京王府井附近 大家好,我是一哥,今天分享一篇数据实时的干货文章。...数据分为append和upsert两种方式。...3,数据任务运维 在实际使用过程中,默认配置下是不能够长期稳定的运行的,一个实时数据导入iceberg表的任务,需要通过至少下述四点进行维护,才能使Iceberg表的和查询性能保持稳定。...并增加小文件监控、定时任务压缩小文件、清理过期数据等功能。 2,准实时数仓探索 本文对数据实时从原理和实战做了比较多的阐述,在完成实时数据SQL化的功能以后,后的数据哪些场景的使用呢?...历史好文推荐 郑州有哪些牛逼的互联网企业 数据数据仓库香在哪? 结合公司业务搞懂数仓建设 流式ETL实践方案

    1.6K20

    数据应用案例有哪些 数据是如何进行工作的

    社会中的资源各种各样,如果依靠自己的力量,是没有办法将资源整合好的,而数据却可以,它能够存储很多的数据资源,对于管理和办公来说,有着很大的作用,以下就是数据应用案例。...数据应用案例有哪些 数据能很好的将数据资源存储下来,数据应用案例有哪些呢?它的应用方面是非常广泛的,首先,它可以应用于政务信息中,能够实现多方管理。...数据还可以应用在企业的运营当中,因为数据可以分析和存储数据,预测未知的发展,这对于企业今后的发展是非常有帮助的。...数据是如何进行工作的 数据工作的原理并不难理解,它主要是将原始的数据进行整合,然后将其存储在数据池当中,而这些数据池将被进行分类。...它主要通过的程序是数据的获取、数据的处理、数据的分析、数据的存储,经过存储后的数据,将会被各大用户使用,而且这些数据都有着各自的元素,所以找起来非常的容易。 数据应用案例有哪些

    1.1K30

    数据】塑造数据框架

    数据数据的风险和挑战 大数据带来的挑战如下: 容量——庞大的数据量是否变得难以管理? 多样性——结构化表格?半结构化 JSON?完全非结构化的文本转储?...准确性——当数据量不同、来源和结构不同以及它们到达的速度不同时,我们如何保持准确性和准确性? 同时管理所有四个是挑战的开始。 很容易将数据视为任何事物的倾倒场。...这些数据可能都是完全相关和准确的,但如果用户找不到他们需要的东西,那么本身就没有价值。从本质上讲,数据淹没是指数据量如此之大,以至于您无法找到其中的内容。...框架 我们把分成不同的部分。关键是中包含各种不同的数据——一些已经过清理并可供业务用户使用,一些是无法辨认的原始数据,需要在使用之前进行仔细分析。...文件夹结构本身可以任意详细,我们自己遵循一个特定的结构: 原始数据区域是进入的任何文件的着陆点,每个数据源都有子文件夹。

    60820

    数据(一):数据概念

    数据概念一、什么是数据数据是一个集中式的存储库,允许你以任意规模存储多个来源、所有结构化和非结构化数据,可以按照原样存储数据,无需对数据进行结构化处理,并运行不同类型的分析对数据进行加工,例如:大数据处理...数据技术可以很好的实现存储层面上的“批流一体”,这就是为什么大数据中需要数据的原因。...三、数据数据仓库的区别数据仓库与数据主要的区别在于如下两点:存储数据类型数据仓库是存储数据,进行建模,存储的是结构化数据数据以其本源格式保存大量原始数据,包括结构化的、半结构化的和非结构化的数据...而对于数据,您只需加载原始数据,然后,当您准备使用数据时,就给它一个定义,这叫做读时模式(Schema-On-Read)。这是两种截然不同的数据处理方法。...因为数据是在数据使用时再定义模型结构,因此提高了数据模型定义的灵活性,可满足更多不同上层业务的高效率分析诉求。图片图片

    1.3K93

    Flink CDC + Hudi 海量数据在顺丰的实践

    image.png 上图为 Flink + Canal 的实时数据架构。...Upsert 或 Merge 写入才能剔除重复的数据,确保数据的最终一致性; 需要两套计算引擎,再加上消息队列 Kafka 才能将数据写入到数据 Hudi 中,过程涉及组件多、链路长,且消耗资源大...此外,如果不能做到任务的合并,需要起很多次任务,采集很多次 Binlog 的数据,可能会导致 DB 机器带宽被打满; 能同时进行全量和增量日志采集,新增表不能暂停日志采集来确保数据的准确性,这种方式会给其他表日志采集带来延迟...上述整个流程中存在两个问题:首先,数据多取,存在数据重复,上图中红色标识即存在重复的数据;其次,全量和增量在两个不同的线程中,也有可能是在两个不同的 JVM 中,因此先发往下游的数据可能是全量数据,也有可能是增量数据...将数据下发,下游会接上一个 KeyBy 算子,再接上数据冲突处理算子,数据冲突的核心是保证发往下游的数据不重复,并且按历史顺序产生。

    1.2K20

    基于Apache Hudi + Flink的亿级数据实践

    随着实时平台的稳定及推广开放,各种使用人员有了更广发的需求: •对实时开发来说,需要将实时sql数据落地做一些etl调试,数据取样等过程检查;•数据分析、业务等希望能结合数仓已有数据体系,对实时数据进行分析和洞察...,比如用户行为实时埋点数据结合数仓已有一些模型进行分析,而不是仅仅看一些高度聚合化的报表;•业务希望将实时数据作为业务过程的一环进行业务驱动,实现业务闭环;•针对部分需求,需要将实时数据落地后,结合其他数仓数据...总的来说,实时平台输出高度聚合后的数据给用户,已经满足不了需求,用户渴求更细致,更原始,更自主,更多可能的数据 而这需要平台能将实时数据落地至离线数仓体系中,因此,基于这些需求演进,实时平台开始了实时数据落地的探索实践...•ETL逻辑能够嵌入落数据任务中•开发入口统一 我们当时做了通用的落数据通道,通道由Spark任务Jar包和Shell脚本组成,数仓开发入口为统一调度平台,将落数据的需求转化为对应的Shell参数,启动脚本后完成数据的落地...当时Flink+Hudi社区还没有实现,我们参考Flink+ORC的落数据的过程,做了实时数据落地的实现,主要是做了落数据Schema的参数化定义,使数据开发同事能shell化实现数据落地。 4.

    87331

    数据

    架构比略差 下面我们看下网上对于主流数据技术的对比 ?...从上图中我们可以看到hudi和iceberg的功能较齐全,下面我们将从如下几方面来 1.元数据打通 2.flink读写数据 3.增量更新 4.对事务的支持 5.对于写入hdfs小文件合并的支持 6.中的数据和仓中的数据的联通测试...7.高效的回缩能力 8.支持Schema变更 9.支持批流读写 9.支持批流读写 说完了技术体现,下面我们在简单说一下数据和数仓的理论定义 数据 其实数据就是一个集中存储数据库,用于存储所有结构化和非结构化数据...数据可用其原生格式存储任何类型的数据,这是没有大小限制。数据的开发主要是为了处理大数据量,擅长处理非结构化数据。 我们通常会将所有数据移动到数据中不进行转换。...数据中的每个数据元素都会分配一个唯一的标识符,并对其进行标记,以后可通过查询找到该元素。这样做技术能够方便我们更好的储存数据数据仓库 数据仓库是位于多个数据库上的大容量存储库。

    63430

    腾讯主导 Apache 开源项目: InLong(应龙)数据原理分析

    WeData 数据集成完全基于 Apache InLong 构建,本文阐述的 InLong 数据能力可以在 WeData 直接使用。...它解决了数据的成本效益和使用复杂性的问题,同时还提供了数据管理与访问的解耦、数据的可见性和一致性保证、快照和时间旅行查询等特性。...在各种数据的场景中,Iceberg 都能够发挥重要的作用,提高数据的可用性和可靠性,同时也为用户带来了更好的数据管理和查询体验。...Sort on Flink Iceberg 上图为 Sort on Flink 主要流程, Iceberg 任务由三个算子一个分区选择器组成,Source 算子从源端拉取数据, Key Selector...例如下图所示,p3 为最后提交的分区,p3的提交时间和当前时间对比在2个分区周期之内,则认为 Sort 还在处理延迟到达的数据,p4, p5, p6 分区数据还未处理,不能进行超时提交。

    46610

    一个理想的数据应具备哪些功能?

    数据基本剖析 根据 Hay、Geisler 和 Quix(2016 年)的说法,数据的三个主要功能是从多个数据源提取原始数据,将其存储在安全的存储库中,并允许用户通过直接查询数据来快速分析所有数据...数据由三个部分[7]组成。数据存储、数据文件格式和数据表格式。所有这些都有助于实现上述功能,并作为数据的基石。...构建和维护模式的灵活性 数据相对于数据仓库的优势之一是数据提供了模式演变的灵活性[17]。数据仓库在存储特定数据集之前需要预定义的模式,而数据不需要这样的模式。...托管清理服务 大多数数据架构中缺乏有效的数据清理机制[23]是一个明显的弱点,会导致数据迅速变成数据沼泽。...托管数据摄取服务 数据中的数据摄取功能有时没有明确的优先级,因为数据的工作原则是“现在存储,以后分析”[29] 然而这很快就会成为瓶颈,数据将变成数据沼泽而无法进行数据分析。

    2K40

    数据 数据仓库有何区别?数据仓库有哪些功能?

    数据仓库具备哪些功能? 数据 数据仓库有何区别? 1、数据含义。...为了帮助大家更好地了解数据数据仓库的区别,先来分别介绍下它们的含义,数据相当于集中储存数据库,它既可以存储结构化数据,也可以存储非结构化数据,可以利用数据的原生格式存储任意类型数据,不存在大小限制...3、数据 数据仓库的区别。...它们在存储数据形式方面有所区别,数据能够保持数据原始形式,数据仓库会对数据形式进行转换或者清理,数据的用户包括数据开发人员、数据科学家以及数据分析师等,数据仓库的用户主要是数据分析师。...数据仓库有哪些功能? 数据仓库的功能包括分析、数据压缩以及并行等,分析功能可以起到提升数据管理和数据查询性能的作用,支持索引和大型表,数据压缩功能起到了降低磁盘系统成本的作用。

    83140

    Dinky 构建 Flink CDC 整库入仓

    》,带了新的数据入仓架构。...如何简化实时数据入仓》总结为以下四点: 1.全增量切换问题 该CDC架构利用了 Hudi 自身的更新能力,可以通过人工介入指定一个准确的增量启动位点实现全增量的切换,但会有丢失数据的风险。...3.Schema 变更导致链路难以维护 表结构的变更是经常出现的事情,但它会使已存在的 FlinkCDC 任务丢失数据,甚至导致链路挂掉。...4.整库 整库是一个炙手可热的话题了,目前通过 FlinkCDC 进行会存在诸多问题,如需要定义大量的 DDL 和编写大量的 INSERT INTO,更为严重的是会占用大量的数据库连接,对 Mysql...此外 Dinky 还支持了整库同步各种数据源的 sink,使用户可以完成入仓的各种需求,欢迎验证。

    4.3K20

    数据仓】数据和仓库:范式简介

    博客系列 数据和仓库第 1 部分:范式简介 数据和仓库第 2 部分:Databricks 和雪花 数据和仓库第 3 部分:Azure Synapse 观点 两种范式:数据数据仓库 基于一些主要组件的选择...,云分析解决方案可以分为两类:数据数据仓库。...数据:去中心化带来的自由 数据范式的核心原则是责任分散。借助大量工具,任何人都可以在访问管理的范围内使用任何数据层中的数据:青铜、白银和黄金。...数据范式解决方案的一个主要弱点是缺乏数据组织,包括集中的元数据存储库。如果由于纠错或源系统修改而导致处理的数据更改,则可能非常难以跟踪。此外,不能始终保证数据的有效性或结构。...集中式数据数据管理工具越来越多,但使用它们取决于开发过程。技术很少强制这样做。 结论:数据数据仓库 在这篇文章中,我们讨论了数据仓库和基于数据的解决方案的基本方法或范式的差异。

    60510

    漫谈“数据

    而这一切的数据基础,正是数据所能提供的。 二、数据特点 数据本身,具备以下几个特点: 1)原始数据 海量原始数据集中存储,无需加工。...3)延迟绑定 数据提供灵活的,面向任务的数据编订,不需要提前定义数据模型。 三、数据优缺点 任何事物都有两面性,数据有优点也同样存在些缺点。 优点包括: 数据中的数据最接近原生的。...这也主要是因为数据过于原始带来的问题。  四、数据与关联概念 4.1 数据 vs 数据仓库 数据建设思路从本质上颠覆了传统数据仓库建设方法论。...4.6 数据 vs 数据安全 数据中存放有大量原始及加工过的数据,这些数据在不受监管的情况下被访问是非常危险的。这里是需要考虑必要的数据安全及隐私保护问题,这些是需要数据提供的能力。...当然数据中也不能无序存放,这里需要有个数据生命周期的概念。需要根据数据的不同阶段,根据其价值、成本因素,设计可行的存储方案。  ?

    1.6K30

    数据到元数据——TBDS新一代元数据管理

    但是缺点是它们的Muti-Catalog服务都是在各自组件里的,不是像Hive Metastore一样是一个独立的服务,不能提供给外部其他引擎使用。...所以在Data+AI 时代,面对AI非结构化数据和大数据的融合,以及更复杂跨源数据治理能力的诉求,TBDS开发了第三阶段的全新一代统一元数据系统。...02、新一代元数据管理方案 TBDS全新元数据系统按照分层主要有统一接入服务层、统一Lakehouse治理层、统一元数据权限层、统一Catalog模型连接层。...我们引入了Gravitino并且基于它在数据治理、数据权限等能力上做了大量的TBDS已有能力的合优化,形成一个闭环、完整的系统。...实现统一元数据 Ranger Plugin主要要做下面的设计: 【1】实现Ranger Service Def的定义描述:里面包括Service有哪些资源的定义(如catalog、database/schema

    25910

    数据】扫盲

    什么是数据 数据是一种以原生格式存储各种大型原始数据集的数据库。您可以通过数据宏观了解自己的数据。 原始数据是指尙未针对特定目的处理过的数据数据中的数据只有在查询后才会进行定义。...数据从多种来源流入中,然后以原始格式存储。 数据数据仓库的差别是什么? 数据仓库可提供可报告的结构化数据模型。这是数据数据仓库的最大区别。...数据存储的是非结构化的原始数据,并未定义具体用途。 数据在存入数据仓库前,需要进行处理,决定哪些数据将会或不会存入数据仓库,这被称为“写时模式”。...鉴于其结构特点,商业分析员和提前知道自己需要用哪些数据完成定期报告的商业用户通常会使用数据仓库。...数据架构 数据采用扁平化架构,因为这些数据既可能是非结构化,也可能是半结构化或结构化,而且是从组织内的各种来源所收集,而数据仓库则是把数据存储在文件或文件夹中。数据可托管于本地或云端。

    56430
    领券