所谓好的用户体验 由 Ghostzhang 发表于 2012-07-16 19:20 怎样的用户体验才是好的用户体验呢?...好像有点跑题了,这次的思考是:并不是所有关注用户感受的体验就叫做是“好”的用户体验。 从何而来这想法呢?...上面的唠叨是一个引子,结果就是"不能赚钱的交互不是好交互",简单的说就是好的交互可以赚钱,可是不好的用户体验也是能赚钱的。...但是从商家的角度来说,我们需要考虑几个因素,第一个就是成本,这个是直接决定了能给用户提供最佳体验的上限到哪,好的椅子意味着更高的成本;其次是投入产出比,开门做生意,不为赚钱是很少的,投入越多,意味着盈利周期可能越长...麦当劳的椅子虽然用户体验不是最好的,但却是这么多年来产品与体验最好的平衡,从而实现利润的最大化。 当你再次遇到这种问题时,就知道如何处之泰然了。(本届 年会 的主题)
提出论点 好的研究想法,兼顾摘果子和啃骨头。...两年前,曾看过刘知远老师的一篇文章《好的研究想法从哪里来》,直到现在印象依然很深刻,文中分析了摘低垂果实容易,但也容易撞车,啃骨头难,但也可能是个不错的选择。...学生年代,作为老师的一个不成器弟子,学术上没有什么建树,幸运的毕了业。现如今到了工业界摸爬滚打,虽然换了个环境,但是发现生存的道理没变。 反面例子 不好的工作想法会加剧“卷”的用户体验。...这样的工作体验确实很糟糕。 我的触发点 沿着你造梦的方向先动手干起来。一年前刚开始决定做攻击者画像的时候,其实心里有底也没底。...引用 好的研究想法从哪里来 杜跃进:数据安全治理的基本思路 来都来了。
今天跟大家继续说说人脸检测的一些事,我们是否考虑过人脸检测,到底哪些特征是比较关键性的??? ? 面部传达着非常丰富的信息,这对于完整的社会互动至关重要。...为了有效地提取这些信息,需要从复杂的视觉场景中很容易地检测到人脸。在这里,我们询问了哪些特征是人脸检测的关键?...为了回答这个问题,本次分享的文章提出了非人脸对象,这些对象产生了对人脸的强烈感知(即Pareidolia)。一组参与者对这组无生命的图像进行评估。第二组评估了12种局部和全局特征的存在。...这些发现表明,人脸检测取决于特定的面部特征、眼睛和嘴巴。这种最小的信息导致过度泛化,产生虚假的人脸感知,但确保真实的面孔不会错过。 ?...为了进一步检查眼睛和嘴巴是否确实对于面部检测是关键的,在第二实验中,我们去除眼睛或嘴巴,或者两个不与面部、耳朵或牙齿相关的特征,以及用于编辑的图像的测量的真实性得分。
机器之心专栏 机器之心编辑部 想要个性化设计高真实感的三维立体人脸,却发现自己并不熟悉专业的设计软件?...三维人脸编辑方法 NeRFFaceEditing 提供了新的解决方案,即使不会三维建模,也能自由编辑高真实感的立体人脸,建模元宇宙中的个性化数字肖像!...而几何特征与材质特征 (a) 通过可控制的材质模块(CAM)模块组合后,再从中采样特征输入材质解码器预测颜色。最后通过体渲染,得到某一视角下的人脸图像与对应的语义掩码。...而在给定一个不同的材质特征 (b) 的情况下,几何特征与材质特征 (b) 通过 CAM 模块和体渲染可以得到另一张几何不变而材质改变的人脸图像。...整体网络结构如下图所示: 图 4 NeRFFaceEditing 的网络架构 除此之外,为了约束拥有同一材质特征,但几何不同的样本渲染结果在材质上相似,NeRFFaceEditing 利用生成好的语义掩码
特征选择(feature selection)从所有的特征中,选择出意义的,对模型有帮助的特征,以避免必须将所有特征都导入模型中去训练的情况。...错误地高估不相关特征的重要性会导致错误的发现,而低估相关特征的重要性会导致我们丢弃重要的特征,从而导致模型性能较差。...基于评估器计算特征重要性原理 前面已经说过最常用的特征选择方法之一是基于评估机器学习模型的特征重要性,而评估机器学习模型试图量化每个特征的相对重要性,以预测目标变量。...由于特征的选择很可能会偏向那些具有大量唯一值的特征,而贪婪算法可能导致在树根附近的被用于分割数据的特征选择错误,而这些特征往往是最重要的。...SHAP和XGBoost一直低估关键特征的重要性,而将不相关的特征赋予显著的重要性,并且在较高的噪声下无法完全区分相关与不相关的特征。显然这些不能被用于特征选择或解释,否则这将会发生严重的后果。
各位大家好,明天就是小年了,已经感受到了过年的味道了,提前祝大家小年快乐。 好,话不多说,今天让我们来一起分享下怎么样来去选择一个好的特征,并且当我们区分出好的特征的时候,好的特征意味着什么。...在这一篇文章中,我们将会用到机器学习的分类器来作为贯穿整篇文章的例子,因为分类器只有在我们提供了好的特征以后才可以为我们的发挥出自己的好的效果,这也意味着找到好特征是机器学习能够学好的一个重要的前提之一...,那么这个时候问题就来了,什么是好特征?...你怎么知道他算得上是好特征?接下来,让我们来解决这些问题。...我们用特征来描述一个物体,比如说在这一类物体中,他们有长度,颜色,这两种特征的属性,那么用这个特征来描述这个类别的时候,好的特征会让我们更加轻松的来辨别出相应特征所代表的类别,而不好的特征会混乱我们的感官
发现问题 前期做规范的过程是十分痛苦的,每做一个板块都要花很多时间去思考怎么表达、展示才能让其他设计师和程序员都一目了,然而随着内容的增加,发现很多地方无法深入的执行下去,只能含糊其辞,给我们制作规范的人员带来了很大苦恼...为什么有如此大的执行阻碍呢?带着问题我们找到团队的一位设计前辈请教了一番,在前辈的指点下,终于发现了问题所在:我们对于前端如何实现设计稿其实并没有很好的了解。...图1-1是XX项目的所有关于二级导航的样式,因为这一块的界面不是我做的(都是借口),所以规范不太了解,导致在做整个项目的规范时,遇到了极大的阻碍。...而第一个容器内的绿色和蓝色部分(间距)也是固定的,所以只有红色区域是可变化的,因为红色区域的文字个数是可以变化的,我们只要给出字体大小即可。...任何事情都有其内在的套路与规律,我们必须要了解事物的本质,才能帮助我们更好的执行;所有的苦恼与迷茫都是源自你对事物的理解不够透彻,所以让我们从现在开始,锻炼透过事物看本质的思维能力,就算以后你不做设计了
那么什么才是好的想法呢?我理解这个”好“字,至少有两个层面的意义。 学科发展角度的”好“ 学术研究本质是对未知领域的探索,是对开放问题的答案的追寻。...好的研究想法从哪里来 想法好还是不好,并不是非黑即白的二分问题,而是像光谱一样呈连续分布,因时而异,因人而宜。...那么,好的研究想法从哪里来呢?我总结,首先要有区分研究想法好与不好的能力,这需要深入全面了解所在研究方向的历史与现状,具体就是对学科文献的全面掌握。...我们很难条分缕析完美地列出区分好与不好想法的所有特征向量,但人脑强大的学习能力,只要给予足够的输入数据,就可以在神经网络中自动学习建立判别的模型,鉴古知今,见微知著,这也许就是常说的学术洞察力。...“ 我当时的回答如下: 我感觉,产业界开始集团化搞的问题,说明其中主要的开放性难题已经被解决得差不多了,如语言识别、人脸识别等,在过去20年里面都陆续被广泛商业应用。
如何培育好的内部开发者平台体验 伦敦——Syntasso 的首席工程师 Abigail Bangser 在本周的 State of Open Con 上说,“应用程序开发人员希望快速行动,而运维工程师希望安全行动...“如果你想建立一个真正伟大的平台工程开发者体验,这需要你将其视为一个整体的社会技术挑战。”...她对平台工程的定义归结为构建、维护和提供“为所有使用它的社区精心策划的平台体验”,这会影响所有不断发展的技术、社会和团队结构。 一个好的平台建立边界。...然后查看已经在运行的工具——Slack、Jira、Trello——并开始跟踪临时请求。什么是最频繁、最困难、最耗时的?您的应用程序团队的辛劳在哪里?...“你想让你的团队更接近平台,与平台互动。做到这一点的一个好方法是提供他们需要的文档和参考实施,”Watt 说。 不要忘记提供平台工程体验的专业服务方面。
在大多数的CNNs中,Softmax损失函数被作为监督信号去训练深度模型。 ? 为了增强深度学习特征的判别力,提出一种新的监督信号,称为中心损失,用于人脸识别任务。...Softmax损失和中心损失的联合监督,可以训练一个鲁棒的CNNs去获得两个关键学习目标的深度特征,尽可能的使类间分散和类内紧凑,在人脸识别中是非常必要的。...以这种方式,标签预测(最后全连接层)像一个线性分类器,并且深度学习的特征很容易被分离。 但是对于人脸识别任务,深度学习特征不仅需要可分离还需要判别性。...判别特征可以通过近邻(NN)或K最近邻(K-NN)算法很好的分类,其不需依赖标签预测。然而,Softmax损失只支持特征的分离,由此产生的特征是不够有效地人脸识别。 ?...通过结合中心损失和Softmax损失去联合监督CNNs的学习,深度学习特征的判别力可以被很大的增强用于鲁棒的人脸识别。大量的实验在一些大规模的人脸基准进行,并证明了所提方法的有效性。
嘉宾 | 赵军 编辑 | 忠良 从2017年开始,音视频应用平台开始逐步关注带宽成本以及观看体验,腾讯从那个时候开始研发极速高清的技术,在研发过程中他们遇到了哪些挑战?...2018 年之前在 Intel 负责视频编码 / 解码 / 转码相关硬件加速的工作,与您现在目前的这个视频云的媒体处理框架最大的区别在哪里?...赵军:腾讯明眸从 2017 年开始开发,在那个时候,我们发现音视频应用平台开始将关注点转向带宽成本、观看体验。...客户只要开启极速高清功能,就能在同画质下降低视频码率 30%-50%,保证用户观看体验的同时,大幅节约成本。...可扩展:一个好的媒体处理框架必须可扩展,原因是 2B 业务需求多变,其实现上底层依赖多变,算力依赖多变,这需要媒体处理框架具备量好的扩展性,不断满足业务的变换。
这个工作聚焦于点云的点特征表示学习,但是,与一般的点特征学习方法并不一样。...我们知道配准的目的是求解输入的点云对之间的相对变换以使它们最好的对齐,在这个过程中,聚焦于用学到的点特征表示构造可靠的匹配对。为此,对于点特征的鲁棒性需求也很重要。...前者用于跨两个点云的点对之间的信息交互,从而使一个点云中的点特征与另一个点云中的相似点特征能够相互感知。后者用于根据两个点云的全局交互信息调整每个点特征,因此一个点云具有对另一个点云的全局感知。...同时,作为我们特征交互模型的第一级,CFE 实现了点云内的特征交互。...这是与在固定输入图上工作的CFE的重要区别。最后,我们在聚合输出特征上应用非线性层来得到调整后的特征 ,即局部交互特征。这个过程可以描述为: 通过LIU,每个点的特征具有局部邻域的特点。
很多网站公司交付网站给客户的时候,都需要一个培训如何使用,这个过程其实很痛苦的,基本上做网站大多采用cms系统,为了省事,很多内容是直接写到模板中去,需要改的时候直接去改模板文件,html,css这些对于专业人来说都不是事情...尤其很多公司的网站维护人员,可能就是一个兼职的文员,或者就是一个普通职员,并没有什么专业基础,如果能可视化操作那绝对可以提升很大的工作效率,还可以让制作公司减省很多培训时间,所以网站可视化对于大部门网站维护人员来说是很重要的功能...至于可视化这块,pageadmin cms做得最完善,直接在网站页面点击编辑按钮即可进入编辑界面,更加直观明了,这样的功能其实更能吸引一些没有基础的非专业用户。...下面pageadmin可视化编辑的效果: 1、进入可视化界面,如下图: 1.png 2、鼠标移动到页面上,有区块的地方会显示编辑按钮,如下图: 2.png 3、点击编辑后,直接弹出编辑界面,如下图: 3...4.1、增加了表单功能,如下图: 4.png 4.2、增加表单后,进入字段管理设计字段,如下图: 5.png 在这里可以创建各种类型字段,多行文本,多行文本,编辑器,下拉表单等网站用到的字段类型都可以添加
我六月底参加深圳的一个线下技术活动,某在线编程的 CEO 谈到他们公司的发版,说:“我说话的这会儿,我们可能就有新版本在发布。”,这句话令我印象深刻。...传统的单体应用,所有的功能模块都写在一起,有的模块是 CPU 运算密集型的,有的模块则是对内存需求更大的,这些模块的代码写在一起,部署的时候,我们只能选择 CPU 运算更强,内存更大的机器,如果采用了了微服务架构...可以灵活的采用最新技术 传统的单体应用一个非常大的弊端就是技术栈升级非常麻烦,这也是为什么你经常会见到用 10 年前的技术栈做的项目,现在还需要继续开发维护。...服务的拆分 个人觉得,这是最大的挑战,我了解到一些公司做微服务,但是服务拆分的乱七八糟。这样到后期越搞越乱,越搞越麻烦,你可能会觉得微服务真坑爹,后悔当初信了说微服务好的鬼话。...这个段子形象的说明了分布式系统带来的挑战。
对于想要在网络上建设网站的用户而言,首先需要为网站购买一个合法的域名,不过很多人对于购买域名并没有实际的经验,因此往往不知道在哪里才能买到需要的域名。那么买域名哪里好?域名供应商的选择标准是什么?...买域名哪里好呢 域名是外部用户访问用户网站的地址,只有准确的地址才能够让别人进入自己的网站,并且域名和网址并不是相等的关系,域名需要经过解析才能够获得网址。...域名的选择标准 很多人在网络上查找后会发现,提供域名的域名供应商在网络上是非常多的,那么买域名哪里好?域名供应商如何来选择呢?...其实有心的用户会发现,网络上的域名供应商虽然多,但不少域名供应商的都只是代理的性质,所提供的域名种类相对比较少,因此在选择域名供应商时应当尽量挑选那些一级域名商,这样可以选择的域名种类会更加丰富。...买域名哪里好?如何挑选域名供应商?
(本文转载自刘知远老师知乎专栏) https://zhuanlan.zhihu.com/p/93765082 编辑:Jerry的算法和NLP 背景说明:临近ACL 2020投稿截止时间,跟同学密集讨论,...好的研究想法从哪里来 想法好还是不好,并不是非黑即白的二分问题,而是像光谱一样呈连续分布,因时而异,因人而宜。...那么,好的研究想法从哪里来呢?我总结,首先要有区分研究想法好与不好的能力,这需要深入全面了解所在研究方向的历史与现状,具体就是对学科文献的全面掌握。...我们很难条分缕析完美地列出区分好与不好想法的所有特征向量,但人脑强大的学习能力,只要给予足够的输入数据,就可以在神经网络中自动学习建立判别的模型,鉴古知今,见微知著,这也许就是常说的学术洞察力。...“ 我当时的回答如下: 我感觉,产业界开始集团化搞的问题,说明其中主要的开放性难题已经被解决得差不多了,如语言识别、人脸识别等,在过去20年里面都陆续被广泛商业应用。
从emeditor,ultraeditor,notepad++这些工具用到如今,似乎已经习惯了ultraeditor的感觉,如果一定要在这些编辑器找到一个亮点,对我来说就是列编辑模式。...,比如列编辑对比这些工具的实现,来给大家一个基本的认识。...整体的效果如下,颜色的搭配和使用来说,还是很简洁的,也可以加载目录。 ? 再来看看列编辑模式,整体来看是满足需求的。 ?...比如我们根据需求去所有相应的插件,可以看到下载量和基本的信息。 ? 下载好以后就可以设置快捷键了。 ? 列模式的编辑效果如下,还是可以的。 ?...webstorm的界面风格比eclipse的好一些,但是和上面的几个文本编辑器的风格来看,个人不是很喜欢。 当然,列模式肯定是支持的。还有一点是需要付费的。 ?
否则在各种同类软件不断刷新的当今,一个无法给用户提供较好体验的软件自然会被淘汰。哪里有服务好的应用性能监控呢?...哪里有服务好的应用性能监控 对于哪里有服务好的应用性能监控这个问题,现在应用市场已经出了很多的类似软件。...一些大的软件制造商或者云服务器商家出产的应用性能监控,一般可信度和质量是比较高的,它们拥有的研发平台是高科技的技术团队,对系统的研发和细节设置肯定是一般的小厂家所不能比的。...上面已经解决了哪里有好的应用性能监控的问题,性能监控在对应用进行实时分析和追踪的过程当中,如果发现了问题,它的报警渠道都有哪些呢?...以上就是哪里有服务好的应用性能监控的相关内容,随便在搜索引擎上搜索一下就会有很多品牌正规的监控软件出现,用户们按需选择就可以了。
尽管基于图像的人脸编辑方法已经比较成熟,但直接将基于图像的编辑方法应用于人脸视频通常会产生不稳定、不连续的结果。...浙江大学计算机辅助设计与图形学国家重点实验室在人脸胖瘦参数化研究领域有着较为丰富的经验,他们曾建立了一个关于人脸软组织厚度的回归方程,自然合理地对三维人脸进行胖瘦编辑,然后将编辑后的结果重映射回二维图像...该方法能在图像领域取得不错的结果,但难以直接应用于视频。首先,在重建步骤的最开始,人脸特征点检测不够精确导致帧与帧之间特征点会发生抖动或者偏移,引起三维人脸不连续变化。...该研究确保了整段视频只存在唯一一组人脸形状参数,同时建立起稳定连续的三维人脸序列。在三维人脸编辑时,该研究先将三维人脸模型中的表情参数分离,胖瘦编辑之后再将表情参数恢复到编辑后的三维人脸上。...该密集映射的建立首先借助变形前后三维模型存在映射关系这一特征,将形变前的二维人脸边界点逆投影至三维人脸模型上,与变形后三维人脸模型对应顶点的投影建立初始映射。
一、前言 大家好,我是 Jack 。 人脸属性编辑再添力作「StyleFlow」,1月7日刚刚开源,上周末我立马就试了一下。...光照角度、人脸角度、年龄、头发、眼镜、胡须、表情等多维角度都可以单独调节: StyleFlow,牛逼! 效果非常好,特别是光照角度的改变,很逼真。...同时人脸属性编辑的效果,与曾经写过的 ALAE 算法,又有了较大的提高。 除了人脸属性编辑,「StyleFlow」也在汽车上验证了效果,汽车角度、汽车颜色都可以一键调节! 教学开始!...由 latent code 组成的空间就是 latent space。 StyleFlow 就做了这么一个事,解耦特征,控制特征。 算法在人脸和汽车数据集上,都取得了非常不错的效果。...按上图的步骤,即可调整人脸的各种属性。 动起手来,一起体验一下吧~
领取专属 10元无门槛券
手把手带您无忧上云