提出论点 好的研究想法,兼顾摘果子和啃骨头。...两年前,曾看过刘知远老师的一篇文章《好的研究想法从哪里来》,直到现在印象依然很深刻,文中分析了摘低垂果实容易,但也容易撞车,啃骨头难,但也可能是个不错的选择。...初入团队,寻找自己的立足点,需要一个好的工作想法。每年末,抓耳挠腮做规划,想要憋出一个好的工作想法。很多同学,包括我自己,陆陆续续零零散散想到很多点,然后自己不断否掉。...人的三维+时间半维 具体如何找到好的想法,一时半会没有头绪。因此,回到最初的起点,从人的层面,我有什么?我想要有什么?...引用 好的研究想法从哪里来 杜跃进:数据安全治理的基本思路 来都来了。
你知道么,每当科技分析师煞有介事地探讨‘大数据’,10个里有9个说的都是‘社交网络’中流出的用户行为数据。...社交网络发展至今,中国专家很喜欢用‘图谱’形容不同SNS掌握的不同类别的庞大数据网络;听上去颇为高大上不说,还跟‘大数据’与生俱来的‘难以驾驭性’有点相得益彰的效果。...从电影制片厂,到唱片公司,再到有线电视台,娱乐产业中的重头参与者们都在目不转睛地盯着这个指南针。每个月,超过10亿个独立用户会造访Youtube,使它成为名符其实的世界第二大社交媒体。...LinkedIn的职业图谱:LinkedIn掌握的价值数据在于每个人的工作经历和职业人脉;注意,这里说的‘每个人’指的是:全世界的白领劳动力。...每天的5亿条推文为新闻和要闻提供了一个最接近于‘实时’的窗口。据Pew的研究数据,Twitter美国用户中有52%把该平台当做主要的新闻获取渠道。 摘自:搜狐
为挖掘行业内技术融合的最佳实践,GMTC 全球大前端技术大会(北京站)策划了「IoT 动态应用开发」「大前端技术融合与跨界」两个专题,我们希望在元宇宙(比如渲染能力)、智能汽车(语音、IM、地图、音乐、...部分精彩议题现已确认: 本次大会中,还有低代码、大前端 DevOps、前端框架新体验、大前端监控、移动端性能与效率优化等专题。...同时,我们也关注大前端破圈的有效姿势,首次聚焦 B 端研发效能、TypeScript、云研发实践等,并邀请 winter 等大咖前来参与“师兄帮帮忙”晚场交流活动,与你讨论“前端如何有效增值”的话题。...这是一本针对零基础前端开发者讲解Webpack与Babel使用方法的图书。随着前端工程的不断发展,Webpack与Babel已成为前端开发的两大核心工具。...本书介绍低代码开发平台设计与开发的详细过程,以元数据模型为核心,介绍服务、数据库、主数据、界面展现、功能配置,以及元数据自身的管理,完整呈现元数据驱动的低代码开发平台的端到端的实现机制。
它是用于完善工艺方案和模具繁杂型面的设计,专门针对汽车和金属成形中的板料成形而开发和优化的。全球大概有九成的汽车制造商用它来进行产品开发、完善工艺。...它将全球各地的方法经验吸收融合,来确保有最新的技术支持。...据网上统计,在薄板冲压成型仿真方面,当前autoform软件市场在全球的占比是排第一的有90%以上的汽车制造商在使用autoform,全球前20家的汽车制造商全都在使用在国内,autoform软件也是有非常多的行业用户...(2)适合设计复杂的深拉延和拉伸成形模、工艺和模面的验证,优化成形参数,最大化减少材料与润滑剂损耗,新板料的评估和改进(4)快速实现求解、简单好用的界面和快速上手、对复杂的工程也有稳当的结果。...我们没必要使用大量硬件和专门的模拟分析师傅,直接能用autoform软件完成模拟。它高质量的结果可以减少产品的开发验证时间,降低开发成本,提高产品质量,给公司带来非常大的竞争优势和市场机遇。
什么算是好的想法 2015年,我在微博上写过一个调侃的小段子: ML派坐落美利坚合众山中,百年来武学奇才辈出,隐然成江湖第一大名门正派,门内有三套入门武功,曰:图模型加圈,神经网加层,优化目标加正则。...好的研究想法从哪里来 想法好还是不好,并不是非黑即白的二分问题,而是像光谱一样呈连续分布,因时而异,因人而宜。...那么,好的研究想法从哪里来呢?我总结,首先要有区分研究想法好与不好的能力,这需要深入全面了解所在研究方向的历史与现状,具体就是对学科文献的全面掌握。...随着研究经历的丰富,会越来越强烈地感受到,越是大跨度交叉的学术报告,越让你受到更大的启发,产生更多让自己兴奋的研究想法。 ?...几项研究工作放在一起,到底是互相割裂说不上话,还是在为一个统一的大目标而努力,格外反映研究的大局意识和布局能力。
大家好,又见面了,我是你们的朋友全栈君。...(告诉电脑去哪里执行以下的代码) URL = 我们所常说的网址 #指定url url = '网址' 4.有了UA伪装以及URL,接下来我们就要去访问目标网站,把网站源代码给拿下来 #发起请求 resposne...='gbk' data = resposne.text 然后就是开始进行数据解析了 6.将抓取下来的网站源码数据加载etree对象中 tree = etree.HTML(data) 7.然后将使用xpath...()函数结合表达式进行标签定位,提取指定内容 我们这里是只要存储图片的区域就可以了,有不懂的可以去查一下 很简单的 li_list = tree.xpath('/html/body/...索引定位 在href值a的div标签下有很多的li标签,想要定位到第二个li标签,li标签后面用中括号加索引值(这里的索引值是从1开始的) /html/body/div[href=’a’]li[2]
这个查询出来的查询速度还凑合,不过随着数据不断增长,有朝一日必定不堪重负。所以分库分表是个周期长而风险高的大活儿,应该尽可能在当前结构上优化,比如升级硬件、迁移历史数据等等,实在没辙了再分。...二、数据库设计也是影响性能的关键 数据类型的选择原则:更简单或者占用空间更小。...IN优化 IN适合主表大子表小,EXIST适合主表小子表大。由于查询优化器的不断升级,很多场景这两者性能差不多一样了。...Join优化 join的实现是采用Nested Loop Join算法,就是通过驱动表的结果集作为基础数据,通过该结数据作为过滤条件到下一个表中循环查询数据,然后合并结果。...如果有多个join,则将前面的结果集作为循环数据,再次到后一个表中查询数据。 驱动表和被驱动表尽可能增加查询条件,满足ON的条件而少用Where,用小结果集驱动大结果集。
传统的单体应用,所有的功能模块都写在一起,有的模块是 CPU 运算密集型的,有的模块则是对内存需求更大的,这些模块的代码写在一起,部署的时候,我们只能选择 CPU 运算更强,内存更大的机器,如果采用了了微服务架构...,不同的系统独立部署,压力大的时候,可以独立进行集群化部署,这些操作都不会影响到已经运行的其他微服务,非常灵活。...可以灵活的采用最新技术 传统的单体应用一个非常大的弊端就是技术栈升级非常麻烦,这也是为什么你经常会见到用 10 年前的技术栈做的项目,现在还需要继续开发维护。...服务的拆分 个人觉得,这是最大的挑战,我了解到一些公司做微服务,但是服务拆分的乱七八糟。这样到后期越搞越乱,越搞越麻烦,你可能会觉得微服务真坑爹,后悔当初信了说微服务好的鬼话。...用了分布式架构,多出了一堆问题:数据如何同步、主键如何产生、如何熔断、分布式事务如何处理......。 这个段子形象的说明了分布式系统带来的挑战。
对于想要在网络上建设网站的用户而言,首先需要为网站购买一个合法的域名,不过很多人对于购买域名并没有实际的经验,因此往往不知道在哪里才能买到需要的域名。那么买域名哪里好?域名供应商的选择标准是什么?...买域名哪里好呢 域名是外部用户访问用户网站的地址,只有准确的地址才能够让别人进入自己的网站,并且域名和网址并不是相等的关系,域名需要经过解析才能够获得网址。...域名的选择标准 很多人在网络上查找后会发现,提供域名的域名供应商在网络上是非常多的,那么买域名哪里好?域名供应商如何来选择呢?...其实有心的用户会发现,网络上的域名供应商虽然多,但不少域名供应商的都只是代理的性质,所提供的域名种类相对比较少,因此在选择域名供应商时应当尽量挑选那些一级域名商,这样可以选择的域名种类会更加丰富。...买域名哪里好?如何挑选域名供应商?
上期已经安装了图数据库,本期就该讨论到底这个图数据库里面的一些基本的概念和如何操作。...1 节点,可以理解为传统数据的行的概念 2 关系:就是表和表之间 join 的概念 (这也是比传统数据库高明的地方,其实还是空间换了时间),关系本身也是带有方向和属性的,这也是传统数据库本身做不到的地方...3 属性:理解为一个MONGODB 里面的document,一个节点会有多种属性 4 标签:理解为mongodb里面的collection 或者 传统数据库中的表,但一个节点可以属于多个表,这个又超越了传统数据库的理解的理念...图数据库是什么个人总结一下,一个通过key value来存储数据,并且在在查询前就建立了JOIN关系的,数据字段属于多个表的 “weirdo” 出现了。...实际上在安装完neo4j 本身他就拥有自己的exmaple 的指导 在输入 :play movie graph 后,你可以看到上图从如何创建,一个实例的图,找寻数据,查询数据等等这些操作 点击箭头,可以将要执行的
铭记历史教训,现在最关键的问题已经变成了找到真正有用的数据。数据的量的确增加了,但值得注意的是:大部分的增长都来源于非结构化数据。 让我先根据Webopedia的定义来解释什么是非结构化数据。...非结构化数据是指没有任何相同结构的数据。例如,图片、视频、电子邮件、文件和文本都被认为是一个数据集内的非结构化数据。...尽管每个单独的文档可能都包含基于其创建程序的特定结构或格式,非结构化数据也可以被认为是“结构松散的数据”,因为数据源其实是具有结构的,但数据集内的所有数据包含的结构可能不尽相同。...与此相反,数据库则是一种常见的“结构化”数据。 所以回顾历史,我们现在讨论的除了数据超载还加上了一个新的变数——代表了大部分新增数据量的非结构化数据。非结构化数据代表着新的量的产生。...引擎利用本体论就可以返回一个特定的结果:“亚伯拉罕-林肯”。 本体论最简洁的表述方式: 什么是数据? 这意味着什么? 它哪里来? 为什么我们需要它——一旦我们知道这些,我们就能找到真正需要的数据了。
否则在各种同类软件不断刷新的当今,一个无法给用户提供较好体验的软件自然会被淘汰。哪里有服务好的应用性能监控呢?...哪里有服务好的应用性能监控 对于哪里有服务好的应用性能监控这个问题,现在应用市场已经出了很多的类似软件。...若是想要好一点的性能监控软件,选择口碑不错的大品牌绝对没错。 监控告警的途径有哪些?...上面已经解决了哪里有好的应用性能监控的问题,性能监控在对应用进行实时分析和追踪的过程当中,如果发现了问题,它的报警渠道都有哪些呢?...以上就是哪里有服务好的应用性能监控的相关内容,随便在搜索引擎上搜索一下就会有很多品牌正规的监控软件出现,用户们按需选择就可以了。
域名对我们来说是非常重要的,因为只有成功注册域名之后,才能够让别人访问我们的网站。...但是,我们需要注意的是,域名在注册成功之后,并不是可以立刻使用的,也是需要一个解析过程才可以让我们的域名正常使用的,很多人不知道在哪里做域名解析,那么,在哪里做域名解析呢? 在哪里做域名解析呢?...域名解析是不需要花钱的,只需要按照一定的操作步骤进行解析就可以了,而且域名解析的步骤也是比较简单的。我们可以自己进行域名解析,如果自己不会进行域名解析的话,可以找专业的人员帮助我们进行域名解析。...一般来说,域名解析是需要进行一级域名解析和二级域名解析的,这两个步骤缺一不可,一定要注意。 在哪里做域名解析呢?...很多地方都是可以进行域名解析的,我们一定要仔细进行解析,因为如果我们无法成功解析域名的话,那么我们的网站也是无法正常运行的,所以域名解析对我们来说是非常重要的。
获取高质量的初始数据对于那些运用机器学习作为他们业务核心技术的创业公司来说是十分重要的。虽然许多算法和软件工具都是开源和共享的,但是好的数据通常是私人专有而且难以创建的。...因此,拥有一个大型的、特定领域的数据集可以成为竞争优势的重要来源,尤其是如果初创公司能够启动数据网络效应(在这种情况下,更多的用户→更多的数据→更智能的算法→更好的产品→继续带来更多的用户)。...不幸的是,初创公司往往在一开始只有有限的或没有标签的数据,这一情况会阻碍创始人在构建数据驱动的产品方面取得重大进展。...因此,在雇佣数据科学团队或建立昂贵的核心基础设施之前,从一开始就值得探索一套数据收集策略。 创业公司可以通过多种方式克服刚开始进行数据采集时遇到的棘手的问题。...Radar(使用ESA卫星图像来监测建设项目) 战略#9:与大企业协作 对于初创企业,数据提供者可能是提供相关数据处理权的大客户。
虽然许多算法和软件工具都是开源和共享的,但是好的数据通常是私人专有而且难以创建的。...因此,拥有一个大型的、特定领域的数据集可以成为竞争优势的重要来源,尤其是如果初创公司能够启动数据网络效应(在这种情况下,更多的用户→更多的数据→更智能的算法→更好的产品→继续带来更多的用户)。...不幸的是,初创公司往往在一开始只有有限的或没有标签的数据,这一情况会阻碍创始人在构建数据驱动的产品方面取得重大进展。...因此,在雇佣数据科学团队或建立昂贵的核心基础设施之前,从一开始就值得探索一套数据收集策略。 创业公司可以通过多种方式克服刚开始进行数据采集时遇到的棘手的问题。...(使用ESA卫星图像来监测建设项目) 战略#9:与大企业协作 对于初创企业,数据提供者可能是提供相关数据处理权的大客户。
曹大最近开 Go 课程了,小X 正在和曹大学 Go。 这个系列会讲一些从课程中学到的让人醍醐灌顶的东西,拨云见日,带你重新认识 Go。...另一方面,goexit 函数的地址是在创建 goroutine 的过程中,塞到栈上的。让 CPU “误以为”:func() 是由 goexit 函数调用的。...下面这张图能看出在 newg 的栈底塞了一个 goexit 函数的地址: ?...而 sched 结构体其实保存的是 goroutine 的执行现场,每当 goroutine 被调离 CPU,它的执行进度就是保存到这里。...好了,这就是今天全部的内容了~ 我是小X,我们下期再见~ ---- 欢迎关注曹大的 TechPaper 以及码农桃花源~
数据如何应用?值得思考、探索和实践! ---- 一切可记录的东西,就是数据。数据从哪里来?找到了源头,才好进行数据获取、整合、分析和应用。 数据从哪里来?...第三,从数据的状态来看,数据可以来自静态数据和动态数据。静态数据,可以看作是一些稳定和不变的数据,比方说一个人的性别、省份证号。...第六,从数据的所属来看,数据可以来自内部数据和外部数据。内部数据就是企业内部通过经营所积累的数据,外部数据就是内部数据之外的数据,可以是公开爬取的数据,可以采购的数据,可以是合作的数据等。...扩大数据的覆盖度,拉伸数据的维度,从而实现更加全面和多维地分析与挖掘,为数据应用“更加有效性、精准性、实时性”添砖加瓦。 ? 总结 数据从哪里来,不同的角度,有不同的出处。...针对自身的业务方向,定位到适合自己的数据源,并且不断地丰富着数据源。 数据应用起航于数据,数据来自各种数据源,数据源的争夺战,势必会成为数据时代的“重头戏”。
,并且尤大也有说这个RFC是借鉴了reacthook的想法,但是规避了一些react的问题,然后这里解释一下为什么我把vue的这个RFC也称为是hook。...仔细思考一下这之间的数据关系,相信你很快就可以理解为什么它可以只执行一次,但是却威力无穷。实际上 Vue3 的 Hook 只需要一个「初始化」的过程,也就是 setup,命名很准确。...vue之所以能避开这些麻烦的问题,根本原因在于它对数据的响应是基于proxy的,这种场景下,只要任何一个更改data的地方,相关的function或者template都会被重新计算,因此避开了react...可能遇到的性能上的问题 当然react对这些都有解决方案,想了解的同学可以去看官网有介绍,比如useCallback,useMemo等hook的作用,我们看下尤大对vue和react hook的总结对比...不得不说,青出于蓝而胜于蓝,vue虽然借鉴了react,但是天然的响应式数据,完美的避开了一些react hook遇到的短板~
我去IBM的时候,第一次看到软件装在了一大堆上百台机器上,而机房里面的密密麻麻的机器,颇有点后现代感。对当时读PhD的我产生了极大的震撼。 在相当长的时间里,Hadoop生态既不好用也不容易入门。...早年的云计算还没有IaaS,PaaS,SaaS这些概念,支撑云计算的三大件是计算,存储和网络,提供的服务主要是虚拟机和持久化大规模低成本的对象存储。...当时唯一的选择是亚马逊。 这算是云计算和大数据的第一次集合。说实话,大家都没想到云计算和大数据的集合,既给了大数据广阔的发展空间,也为云计算找到了一个非常重要的使用场景。...毫无疑问,大数据技术本身对硬件资源消耗的要求,对软件运维的要求等各方面,都表明,只有拥抱云原生,大数据才能够避免高门槛,难度大等一系列问题,真正成为所有客户的选择。 下面我们聊聊数智融合的问题。...一般的公司要数据没数据,要技术没技术。而腾讯不一样。 一方面,腾讯有大量的数据在手。有数据的公司,在互联网时代,都是有金矿的公司。
领取专属 10元无门槛券
手把手带您无忧上云