腾讯云携礼贺新春 Switch、腾讯视频VIP等多重好礼送不停 腾讯云音视频在音视频领域已有超过21年的技术积累,持续支持国内90%的音视频客户...
— END —
腾讯云携礼贺新春,Switch、腾讯视频VIP等多重好礼送不停!
在疯狂的消费者面前,某些热点商品带来的疯狂是开发人员都不敢想象的,所以redis都可能TM扛不住,只有使用最牛逼的本地缓存可以抗衡(ps:也不一定,有些第三方服务做的好的除外,我这边不太能完全相信第三方...这里对于目前手里的资源,做了一些妥协向下的适配 组内资源有限,不像京东主页的秒杀团队,动辄能有几万核资源的调度,那么我就要做一些妥协了... 1.目前为了实现本地缓存最高命中率,以及节约服务器内存资源,只有活动信息以及时段信息等上线就不会变化的...,而且要是高频查询的(像活动是不是活动商品,活动有效期啊,活动开团时段啊等等),这些咱们进行本地化缓存 2.另外固定热key条数限制为1000条 3.淘汰算法为LRU淘汰,因为我这边周期购活动,周期性时间规律比较强...,用LFU最近最少使用极有可能淘汰掉只是暂时没开团的活动,导致本地缓存命中率低顺带着提一嘴,我们这里用的京东云提供给我们的热点发现服务,我也就是LUR算法,对一定时间内的数据做统计 二 热key的简略流程图
比赛链接 https://www.heywhale.com/home/competition/620b34ed28270b0017b823ad/content/3 1 赛题背景 京东商品标题包含了商品的大量关键信息...,商品标题实体识别是NLP应用中的一项核心基础任务,能为多种下游场景所复用,从标题文本中准确抽取出商品相关实体能够提升检索、推荐等业务场景下的用户体验和平台效率。...本赛题要求选手使用模型抽取出商品标题文本中的实体。 与传统的实体抽取不同,京东商品标题文本的实体密度高、实体粒度细,赛题具有特色性。...值得注意的是实体不仅仅与实体词有关,而且与当前标题所售卖商品有关。...举例说明,一个售卖产品为手机壳的商品标题中出现的“iPhone13”与售卖产品为手机的商品标题中出现的“iPhone13”为不同的实体标签。
ArcFace: Additive Angular Margin Loss for Deep Face Recognition(CVPR2019) 简 介 利用深度卷积神经网络(DCNNs)进行大规模人脸识别特征学习的一大挑战是设计合适的损失函数以提高识别能力...在本文中,我们提出了一个附加的角Margin损失(ArcFace)来获得高分辨的人脸识别特征。由于与超球面上的测地距离精确对应,所提出的弧面具有清晰的几何解释。...背 景 目前训练人脸识别的DCNN方案主要有两种: 训练一个多分类器,它可以将训练集合中的不同实体分开; 训练embeddings,例如triplet loss。...但是softmax的loss和triplet loss都存在一些缺点, 对于softmax来说: 线性转化矩阵和是线性相关的; 学习得到的特征对于闭集分类问题是可分离的,而对于开集人脸识别问题,学习到的特征是不可分辨的...ArcFace相较于Triplet-Loss有更好的margin; 小结 本文提出了一种Additive Angular Margin Loss ,该函数能有效地提高DCNNs学习的特征嵌入在人脸识别中的判别能力
基于Bert进行实体识别任务微调 所需要的pip包 pandas numpy sklearn pytorch transformers: https://github.com/...torch import cuda device = 'cuda' if cuda.is_available() else 'cpu' print(device) cuda 数据处理 比赛数据下载地址:商品标题实体识别
---- ©作者 | 康洪雨 单位 | 有赞科技 研究方向 | NLP/推荐算法 来自 | PaperWeekly 最近一段时间在做商品理解的工作,主要内容是从商品标题里识别出商品的一些属性标签,包括不限于品牌...▲ 商品理解示例,品牌:佳丰;口味:蒜香味 本文主要记录下做这个任务上遇到的问题,踩的坑,模型的效果等。...主要内容: 怎么构建命名实体识别(NER)任务的标注数据 BertCRF 训练单标签识别过程及踩坑 BertCRF 训练超多标签识别过程及踩坑 CascadeBertCRF 训练超多标签识别过程及踩坑...而且抽出的字一般都是标题前 1、2 个字,这与商品品牌一般都在标题前面有关。...多标签样本是指一个标题中包含多个标签,比如下面这个商品包含 5 个标签。
0x00寻找活动入口 打开活动URL之后你会看见参加流程但是就是没有闯关地址和机器人QQ号F12之后你就会明白。...[60e85b19c55649759dd62c6c19ceee98.png] 活动网址和参与方式都在源码里面隐藏着,获取密钥之后我们直接开始闯关。...rDUzb92Pg221FokNkGv7gD1bJzU%253D&Expires=1613946438] [67ace6d34dd1440fa0c283ddc23307da.png] 到此结束了十个关卡完成了新年解谜这个活动...,总体来说还是比较友好的活动。
2 基于EasyDL零售版的商品识别方案 将终端数据转化为数字资产 百度飞桨EasyDL零售版,针对快消零售业提供专业版服务,实现了低成本、高精度获取商品图像识别模型,完成智能化的店内陈列与费用核销。...通过 EasyDL 零售版,可以训练包含但不限于本品 SKU、竞品 SKU、POSM 助销物料、价签与价格等识别对象。...同时,还配套提供货架拼接、翻拍识别、空位识别、商品陈列层数识别、商品陈列场景识别等通用能力,从业务实际需求出发,有效获取网点真实商品分销和陈列数据,推动实时预警、及时跟进的市场策略落地,帮助快消品牌商顺利完成经营模式的数字化转型
它在以人为中心的重识别,人工分析中有广泛的应用。尽管近十年取得了巨大的进展,但人脸检测仍然具有挑战性,尤其是在恶劣光照条件下的图像。...例如,增强有噪声图像的平滑操作可能会破坏对检测至关重要的特征可识别性。这表明增强和检测组件之间的紧密集成,并指出了端到端“增强检测”解决方案。...计算机视觉研究院主要涉及深度学习领域,主要致力于人脸检测、人脸识别,多目标检测、目标跟踪、图像分割等研究方向。研究院接下来会不断分享最新的论文算法新框架,我们这次改革不同点就是,我们要着重”研究“。...Sparse R-CNN:稀疏框架,端到端的目标检测(附源码) 利用TRansformer进行端到端的目标检测及跟踪(附源代码) 细粒度特征提取和定位用于目标检测(附论文下载) 特别小的目标检测识别
利用深度卷积神经网络(DCNNs)进行大规模人脸识别特征学习的一大挑战是设计合适的损失函数以提高识别能力。...在本文中,我们提出了一个附加的角Margin损失(ArcFace)来获得高分辨的人脸识别特征。由于与超球面上的测地距离精确对应,所提出的弧面具有清晰的几何解释。...目前训练人脸识别的DCNN方案主要有两种: 训练一个多分类器,它可以将训练集合中的不同实体分开; 训练embeddings,例如triplet loss。...但是softmax的loss和triplet loss都存在一些缺点, 对于softmax来说: 线性转化矩阵和是线性相关的; 学习得到的特征对于闭集分类问题是可分离的,而对于开集人脸识别问题,学习到的特征是不可分辨的...本文提出了一种Additive Angular Margin Loss ,该函数能有效地提高DCNNs学习的特征嵌入在人脸识别中的判别能力。
人体活动识别(HAR)是一种使用人工智能(AI)从智能手表等活动记录设备产生的原始数据中识别人类活动的方法。当人们执行某种动作时,人们佩戴的传感器(智能手表、手环、专用设备等)就会产生信号。...人类活动识别有各种各样的应用,从为病人和残疾人提供帮助到像游戏这样严重依赖于分析运动技能的领域。我们可以将这些人类活动识别技术大致分为两类:固定传感器和移动传感器。...在本文中,我们使用移动传感器产生的原始数据来识别人类活动。...在本文中,我将使用LSTM (Long - term Memory)和CNN (Convolutional Neural Network)来识别下面的人类活动: 下楼 上楼 跑步 坐着 站立 步行 概述...机器学习方法在很大程度上依赖于启发式手动特征提取人类活动识别任务,而我们这里需要做的是端到端的学习,简化了启发式手动提取特征的操作。
来源:DeepHub IMBA本文约3400字,建议阅读10+分钟本文带你使用移动传感器产生的原始数据来识别人类活动。...人体活动识别(HAR)是一种使用人工智能(AI)从智能手表等活动记录设备产生的原始数据中识别人类活动的方法。当人们执行某种动作时,人们佩戴的传感器(智能手表、手环、专用设备等)就会产生信号。...人类活动识别有各种各样的应用,从为病人和残疾人提供帮助到像游戏这样严重依赖于分析运动技能的领域。我们可以将这些人类活动识别技术大致分为两类:固定传感器和移动传感器。...在本文中,我们使用移动传感器产生的原始数据来识别人类活动。...机器学习方法在很大程度上依赖于启发式手动特征提取人类活动识别任务,而我们这里需要做的是端到端的学习,简化了启发式手动提取特征的操作。
人脸识别已经逐渐渗透我们的日常生活,机器能够认准人脸,想必大家都有所耳闻;而另一类计算机视觉的应用,是进行商品识别。...当前新兴的一些无人零售店,背后就需要机器对商品进行自动识别,拍图购物、AR互动营销等场景,也运用了商品识别技术。...今天,图酱就跟大家科普应用在无人店、新零售中的商品识别技术。...研究组,则要克服各种疑难杂症,比如容易产生褶皱的软包装、商品侧面和背面的识别、遮挡和反光环境下的识别等等。 ? 目前,在实际生产环境下,已经达到95%以上的识别准确率。...人脸都有眼睛、鼻子、嘴巴等固定的特征,而超市中琳琅满目的商品,则千奇百态。与人脸识别相比,商品识别有更高的工程复杂度。
本文介绍了门票活动商品结构的演进和过程中的技术挑战。...活动结构门票:这是一个对标国外竞品高度结构化的商品结构,适用于活动品类和国际化商品。但受限于翻译时需要将结构化字段降级成文本,因此翻译成本相对较高。...系统不能识别同质化商品,重复的商品在货架展示,用户无法区分商品的差异,决策困难。...图:门票活动商品三层结构 确定了这三层商品结构后,接下来的步骤是多套系统的融合。...销售属性标准化,让系统认识每条商品,提供为用户推荐更优商品的能力。 其次,通过销售属性标准化,我们使得系统能够识别每条商品,从而为用户推荐更优的选项。
比赛简介 主办方提供了商品名称和用户query数据供选手进行模型训练,希望选手能够设计出一套高效、精准的商品意图识别模型,以帮助提升电商搜索的效果,改善顾客的购买体验。...其中提供了两份数据,一个是goods_data.csv是商品名称数据,一个是query_data.csv是用户query数据,共39470条 前期我们做的尝试比较多,后面差不多烂尾了,庆幸b榜还在第一页...文本长度统计如下:商品名称数据中 文本字符长度最大为39,最小为6。我们在训练中选择了覆盖绝大部分数据长度的大小26,其余没有做过多尝试。
感谢各位创作者一直以来对腾讯云开发者社区的支持和贡献,本次腾讯云开发者社区为总榜TOP900的创作者都准备了新年惊喜,请符合要求的作者注意查看完整的创作总结报告,按要求登记地址。...不在TOP900以内的作者也没关系,参与我们下面的新年活动吧!...---- image.png 腾讯云开发者社区创作者新年活动 活动1—【新年抽奖】 参与资格:所有创作者(在腾讯云开发者社区发表文章数≥1的用户) 活动时间:2020.1.16-2020.2.3 参与方式...奖品设置:腾讯鼠年公仔×10个;腾讯蓝办公礼盒套装×10份;腾讯云开发者社区随机周边×20份;限量新年贺卡×30张。...参与地址 活动2—【返图有礼】 参与资格:所有创作者(在腾讯云开发者社区发表文章数≥1的用户) 活动时间:2020.1.16-2020.2.3 参与方式: 1、在朋友圈晒出自己的年度总结(海报、H5截图
作者 | 康洪雨 单位 | 有赞科技 整理 | PaperWeekly 最近一段时间在做商品理解的工作,主要内容是从商品标题里识别出商品的一些属性标签,包括不限于品牌、颜色、领型、适用人群、尺码等等...▲ 商品理解示例,品牌:佳丰;口味:蒜香味 本文主要记录下做这个任务上遇到的问题,踩的坑,模型的效果等。...主要内容: 怎么构建命名实体识别(NER)任务的标注数据 BertCRF 训练单标签识别过程及踩坑 BertCRF 训练超多标签识别过程及踩坑 CascadeBertCRF 训练超多标签识别过程及踩坑...而且抽出的字一般都是标题前 1、2 个字,这与商品品牌一般都在标题前面有关。...多标签样本是指一个标题中包含多个标签,比如下面这个商品包含 5 个标签。
"商品识别"、"人脸识别"、"以图搜图"有什么难?这个在 GitHub 上狂圈 Star 3100+ 的项目就能轻松帮你实现! 它就是全开源、轻量级的图像识别系统 PP-ShiTu。...当然不是,一个优秀的图像识别系统往往在处理实际场景问题过程中需要面临各种挑战: 1.商品类别数以万计:根本没法事先把所有类别都放入训练集; 2.不同商品相似度极高:比如同一种饮料的不同口味,就很可能拥有非常类似的包装...,同时对于商品识别中品类众多、外观相似和更新频繁的痛难点也提供了可参考的示范。...其实商品识别的能力远不仅如此,商超能够通过这项技术进行资产保护,降低运营成本;时尚行业能够通过这项技术,完成对秀场服装的大数据分析,把握时尚潮流;服装行业可以通过商品识别快速匹配产品材质和生产工艺等相关信息...未来,从设计到生产、从物流到销售,AI 商品识别,大有可为! 如果您想详细了解更多飞桨的相关内容,请参阅以下文档。
领取专属 10元无门槛券
手把手带您无忧上云