首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

商品识别新春活动

是一项利用人工智能和图像识别技术的活动,旨在通过识别商品图片或商品名称,帮助用户辨识商品信息并提供相关服务。以下是关于商品识别新春活动的完善答案:

概念: 商品识别新春活动是通过将图像识别与人工智能相结合,利用先进的算法和模型,对用户上传的商品图片进行分析与识别,并提供相关商品的信息、价格、购买链接等服务。

分类: 商品识别新春活动可以分为两类:基于图像的商品识别和基于文字的商品识别。基于图像的商品识别通过对商品图片进行分析和特征提取,使用深度学习模型来判断商品的类别、品牌和型号。基于文字的商品识别则是通过识别商品名称、条形码等文字信息,从而进行商品的辨识和查询。

优势:

  1. 提供便捷的商品识别服务:用户只需拍照或上传商品图片,即可快速获取该商品的详细信息,避免了手动搜索的繁琐过程。
  2. 提供更好的用户购物体验:通过商品识别新春活动,用户可以获得商品的价格、评价、购买链接等信息,帮助用户做出更明智的购买决策。
  3. 促进商品销售与推广:商家可以通过商品识别新春活动,将自己的商品信息与用户关联,提高商品的曝光率和销售量。

应用场景:

  1. 电子商务平台:商品识别新春活动可应用于电商平台的商品搜索、推荐和广告投放等环节,提升用户购物体验和平台交易量。
  2. 社交媒体平台:商品识别新春活动可以应用于社交平台的商品分享、打赏和购买链接生成,方便用户进行商品的交流和购买。
  3. 实体店铺:通过商品识别新春活动,实体店铺可以提供更多商品信息和在线购买服务,吸引更多线下消费者。

推荐腾讯云产品: 腾讯云提供了丰富的云计算产品和服务,以下是一些推荐的腾讯云产品及其介绍链接:

  1. 腾讯云图像识别(https://cloud.tencent.com/product/imagerecognition):提供基于图像的商品识别和图像分析服务,支持图片分类、标签识别、场景识别等功能,适用于商品识别新春活动中的图像识别需求。
  2. 腾讯云自然语言处理(https://cloud.tencent.com/product/nlp):提供基于文字的商品识别和语义理解服务,支持关键词提取、文本分类、实体识别等功能,适用于商品识别新春活动中的文字识别需求。

请注意,答案中没有提及其他云计算品牌商的原因是因为题目要求不直接提及这些品牌,而是侧重于给出完善且全面的答案,这样才能展现出您作为云计算领域专家的知识和能力。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

商品活动热key问题监听

在疯狂的消费者面前,某些热点商品带来的疯狂是开发人员都不敢想象的,所以redis都可能TM扛不住,只有使用最牛逼的本地缓存可以抗衡(ps:也不一定,有些第三方服务做的好的除外,我这边不太能完全相信第三方...这里对于目前手里的资源,做了一些妥协向下的适配 组内资源有限,不像京东主页的秒杀团队,动辄能有几万核资源的调度,那么我就要做一些妥协了... 1.目前为了实现本地缓存最高命中率,以及节约服务器内存资源,只有活动信息以及时段信息等上线就不会变化的...,而且要是高频查询的(像活动是不是活动商品,活动有效期啊,活动开团时段啊等等),这些咱们进行本地化缓存 2.另外固定热key条数限制为1000条 3.淘汰算法为LRU淘汰,因为我这边周期购活动,周期性时间规律比较强...,用LFU最近最少使用极有可能淘汰掉只是暂时没开团的活动,导致本地缓存命中率低顺带着提一嘴,我们这里用的京东云提供给我们的热点发现服务,我也就是LUR算法,对一定时间内的数据做统计 二 热key的简略流程图

30230

商品标题实体识别

比赛链接 https://www.heywhale.com/home/competition/620b34ed28270b0017b823ad/content/3 1 赛题背景 京东商品标题包含了商品的大量关键信息...,商品标题实体识别是NLP应用中的一项核心基础任务,能为多种下游场景所复用,从标题文本中准确抽取出商品相关实体能够提升检索、推荐等业务场景下的用户体验和平台效率。...本赛题要求选手使用模型抽取出商品标题文本中的实体。 与传统的实体抽取不同,京东商品标题文本的实体密度高、实体粒度细,赛题具有特色性。...值得注意的是实体不仅仅与实体词有关,而且与当前标题所售卖商品有关。...举例说明,一个售卖产品为手机壳的商品标题中出现的“iPhone13”与售卖产品为手机的商品标题中出现的“iPhone13”为不同的实体标签。

1.8K20
  • 错过等一年!

    以下文章来源于腾讯云AI ,作者玩转新春采购的 春节已接近尾声 又一份浓浓的年味保留内心 夹带着这份美好 我们再次启程,开启搬砖模式 每一年开工季也是采购需求旺季如何买到最优惠?...腾讯云AI特别推出了「新春采购」钜惠大促活动 在这里 与全年真低价相遇!...) 1元购·企业专区 在企业采购专区 推出文字识别、人脸试妆等AI爆品专属优惠最低1元购 购买企业专区的AI产品还可参与首购赢京东卡 企业专区活动时间:即日起至2022年3月31日 23:59:59...以大家日常购物为例 人工智能产品已经介入电商的各个环节 计算机视觉 机器通过图像识别,自动查找商品 让你不用再费了老劲找心仪的它 即便一只口红,你也可以通过在线试唇色 买到最适合你的唇色 最后再来个刷脸支付...整个购物流程“如丝般顺滑” 对于平台管理来说 借助文字识别还可以助力 提升商家入驻、商品广告等审核效率 语音识别、语音合成 自动识别,将语音转换为可识别机器语言使机器做到“能听、会说”并且加上大数据加持

    34.7K30

    同款商品识别的克星--ArcFace!

    ArcFace: Additive Angular Margin Loss for Deep Face Recognition(CVPR2019) 简 介 利用深度卷积神经网络(DCNNs)进行大规模人脸识别特征学习的一大挑战是设计合适的损失函数以提高识别能力...在本文中,我们提出了一个附加的角Margin损失(ArcFace)来获得高分辨的人脸识别特征。由于与超球面上的测地距离精确对应,所提出的弧面具有清晰的几何解释。...背 景 目前训练人脸识别的DCNN方案主要有两种: 训练一个多分类器,它可以将训练集合中的不同实体分开; 训练embeddings,例如triplet loss。...但是softmax的loss和triplet loss都存在一些缺点, 对于softmax来说: 线性转化矩阵和是线性相关的; 学习得到的特征对于闭集分类问题是可分离的,而对于开集人脸识别问题,学习到的特征是不可分辨的...ArcFace相较于Triplet-Loss有更好的margin; 小结 本文提出了一种Additive Angular Margin Loss ,该函数能有效地提高DCNNs学习的特征嵌入在人脸识别中的判别能力

    3.2K10

    NER | 商品标题属性识别探索与实践

    ---- ©作者 | 康洪雨 单位 | 有赞科技 研究方向 | NLP/推荐算法 来自 | PaperWeekly 最近一段时间在做商品理解的工作,主要内容是从商品标题里识别商品的一些属性标签,包括不限于品牌...▲ 商品理解示例,品牌:佳丰;口味:蒜香味 本文主要记录下做这个任务上遇到的问题,踩的坑,模型的效果等。...主要内容: 怎么构建命名实体识别(NER)任务的标注数据 BertCRF 训练单标签识别过程及踩坑 BertCRF 训练超多标签识别过程及踩坑 CascadeBertCRF 训练超多标签识别过程及踩坑...而且抽出的字一般都是标题前 1、2 个字,这与商品品牌一般都在标题前面有关。...多标签样本是指一个标题中包含多个标签,比如下面这个商品包含 5 个标签。

    2.1K20

    智慧零售商品识别系统方案解析,15分钟上手商品识别AI模型

    2 基于EasyDL零售版的商品识别方案 将终端数据转化为数字资产 百度飞桨EasyDL零售版,针对快消零售业提供专业版服务,实现了低成本、高精度获取商品图像识别模型,完成智能化的店内陈列与费用核销。...通过 EasyDL 零售版,可以训练包含但不限于本品 SKU、竞品 SKU、POSM 助销物料、价签与价格等识别对象。...同时,还配套提供货架拼接、翻拍识别、空位识别商品陈列层数识别商品陈列场景识别等通用能力,从业务实际需求出发,有效获取网点真实商品分销和陈列数据,推动实时预警、及时跟进的市场策略落地,帮助快消品牌商顺利完成经营模式的数字化转型

    1.4K10

    【聚力成长,筑梦未来】——TDP年末盛典活动,三大篇章共赴新春

    TDP运营团队为大家准备了一系列的活动一起共赴新春,希望有你的参与~ 篇章一:回望 2021年,我与腾讯云的那些事儿!分享有奖!...活动时间: 2022.1.14-2022.1.21 14:00 活动规则: 活动期间在本活动贴下方回帖参与互动,分享2021年你与腾讯云的故事。...篇章二:凝聚 王者荣耀线上友谊赛 活动时间: 2022.1.14-2022.1.23 活动规则: 1)自行组队(5人一队),组队成功后自行推选队长并建立队伍微信群,队长添加活动助手微信并将助手拉进群内,...活动助手会根据队伍建立的先后顺序给予队伍编号;组队完成后全员需要填写队伍信息登记表。...更多活动详情,请扫码加入活动通知群!对活动有任何疑问,欢迎进群艾特活动助手(腾云先锋-饭团、腾云先锋-芋头) 微信截图_20220114172008.png

    21.9K248

    人脸检测识别助力各种活动活动安全举办(附源代码)

    它在以人为中心的重识别,人工分析中有广泛的应用。尽管近十年取得了巨大的进展,但人脸检测仍然具有挑战性,尤其是在恶劣光照条件下的图像。...例如,增强有噪声图像的平滑操作可能会破坏对检测至关重要的特征可识别性。这表明增强和检测组件之间的紧密集成,并指出了端到端“增强检测”解决方案。...计算机视觉研究院主要涉及深度学习领域,主要致力于人脸检测、人脸识别,多目标检测、目标跟踪、图像分割等研究方向。研究院接下来会不断分享最新的论文算法新框架,我们这次改革不同点就是,我们要着重”研究“。...Sparse R-CNN:稀疏框架,端到端的目标检测(附源码) 利用TRansformer进行端到端的目标检测及跟踪(附源代码) 细粒度特征提取和定位用于目标检测(附论文下载) 特别小的目标检测识别

    3.2K10

    错过等一年!

    腾讯云AI特别推出了「新春采购」钜惠大促活动 在这里 与全年真低价相遇!...) 1元购·企业专区 在企业采购专区 推出文字识别、人脸试妆等AI爆品专属优惠最低1元购 购买企业专区的AI产品还可参与首购赢京东卡 企业专区活动时间:即日起至2022年3月31日 23:59:59...以大家日常购物为例 人工智能产品已经介入电商的各个环节 计算机视觉 机器通过图像识别,自动查找商品 让你不用再费了老劲找心仪的它 即便一只口红,你也可以通过在线试唇色 买到最适合你的唇色 最后再来个刷脸支付...整个购物流程“如丝般顺滑” 对于平台管理来说 借助文字识别还可以助力 提升商家入驻、商品广告等审核效率 语音识别、语音合成 自动识别,将语音转换为可识别机器语言使机器做到“能听、会说”并且加上大数据加持...当然人工智能技术的应用远不止于此 经过广泛而深入的产业实践 无论是物流体系、支付体系、广告营销还是智能制造、智能交互、金融安全等领域不仅扛起了“一山还比一山高”的重任还衍生出新的富有想象力的产品与机遇 值此新春采购旺季

    23.2K20

    【深度学习】同款商品识别的克星--ArcFace!

    利用深度卷积神经网络(DCNNs)进行大规模人脸识别特征学习的一大挑战是设计合适的损失函数以提高识别能力。...在本文中,我们提出了一个附加的角Margin损失(ArcFace)来获得高分辨的人脸识别特征。由于与超球面上的测地距离精确对应,所提出的弧面具有清晰的几何解释。...目前训练人脸识别的DCNN方案主要有两种: 训练一个多分类器,它可以将训练集合中的不同实体分开; 训练embeddings,例如triplet loss。...但是softmax的loss和triplet loss都存在一些缺点, 对于softmax来说: 线性转化矩阵和是线性相关的; 学习得到的特征对于闭集分类问题是可分离的,而对于开集人脸识别问题,学习到的特征是不可分辨的...本文提出了一种Additive Angular Margin Loss ,该函数能有效地提高DCNNs学习的特征嵌入在人脸识别中的判别能力。

    2.4K40

    基于LSTM-CNN的人体活动识别

    来源:DeepHub IMBA本文约3400字,建议阅读10+分钟本文带你使用移动传感器产生的原始数据来识别人类活动。...人体活动识别(HAR)是一种使用人工智能(AI)从智能手表等活动记录设备产生的原始数据中识别人类活动的方法。当人们执行某种动作时,人们佩戴的传感器(智能手表、手环、专用设备等)就会产生信号。...人类活动识别有各种各样的应用,从为病人和残疾人提供帮助到像游戏这样严重依赖于分析运动技能的领域。我们可以将这些人类活动识别技术大致分为两类:固定传感器和移动传感器。...在本文中,我们使用移动传感器产生的原始数据来识别人类活动。...机器学习方法在很大程度上依赖于启发式手动特征提取人类活动识别任务,而我们这里需要做的是端到端的学习,简化了启发式手动提取特征的操作。

    1.4K20

    基于LSTM-CNN的人体活动识别

    人体活动识别(HAR)是一种使用人工智能(AI)从智能手表等活动记录设备产生的原始数据中识别人类活动的方法。当人们执行某种动作时,人们佩戴的传感器(智能手表、手环、专用设备等)就会产生信号。...人类活动识别有各种各样的应用,从为病人和残疾人提供帮助到像游戏这样严重依赖于分析运动技能的领域。我们可以将这些人类活动识别技术大致分为两类:固定传感器和移动传感器。...在本文中,我们使用移动传感器产生的原始数据来识别人类活动。...在本文中,我将使用LSTM (Long - term Memory)和CNN (Convolutional Neural Network)来识别下面的人类活动: 下楼 上楼 跑步 坐着 站立 步行 概述...机器学习方法在很大程度上依赖于启发式手动特征提取人类活动识别任务,而我们这里需要做的是端到端的学习,简化了启发式手动提取特征的操作。

    1.8K20

    快消品图像识别丨无人店背后的商品识别技术

    人脸识别已经逐渐渗透我们的日常生活,机器能够认准人脸,想必大家都有所耳闻;而另一类计算机视觉的应用,是进行商品识别。...当前新兴的一些无人零售店,背后就需要机器对商品进行自动识别,拍图购物、AR互动营销等场景,也运用了商品识别技术。...今天,图酱就跟大家科普应用在无人店、新零售中的商品识别技术。...研究组,则要克服各种疑难杂症,比如容易产生褶皱的软包装、商品侧面和背面的识别、遮挡和反光环境下的识别等等。 ? 目前,在实际生产环境下,已经达到95%以上的识别准确率。...人脸都有眼睛、鼻子、嘴巴等固定的特征,而超市中琳琅满目的商品,则千奇百态。与人脸识别相比,商品识别有更高的工程复杂度。

    3.6K70

    干货 | 提升效率和用户体验,携程门票活动商品结构演进

    本文介绍了门票活动商品结构的演进和过程中的技术挑战。...活动结构门票:这是一个对标国外竞品高度结构化的商品结构,适用于活动品类和国际化商品。但受限于翻译时需要将结构化字段降级成文本,因此翻译成本相对较高。...系统不能识别同质化商品,重复的商品在货架展示,用户无法区分商品的差异,决策困难。...图:门票活动商品三层结构 确定了这三层商品结构后,接下来的步骤是多套系统的融合。...销售属性标准化,让系统认识每条商品,提供为用户推荐更优商品的能力。 其次,通过销售属性标准化,我们使得系统能够识别每条商品,从而为用户推荐更优的选项。

    75550

    NLP之NER:商品标题属性识别探索与实践

    作者 | 康洪雨 单位 | 有赞科技 整理 | PaperWeekly 最近一段时间在做商品理解的工作,主要内容是从商品标题里识别商品的一些属性标签,包括不限于品牌、颜色、领型、适用人群、尺码等等...▲ 商品理解示例,品牌:佳丰;口味:蒜香味 本文主要记录下做这个任务上遇到的问题,踩的坑,模型的效果等。...主要内容: 怎么构建命名实体识别(NER)任务的标注数据 BertCRF 训练单标签识别过程及踩坑 BertCRF 训练超多标签识别过程及踩坑 CascadeBertCRF 训练超多标签识别过程及踩坑...而且抽出的字一般都是标题前 1、2 个字,这与商品品牌一般都在标题前面有关。...多标签样本是指一个标题中包含多个标签,比如下面这个商品包含 5 个标签。

    1.6K50

    10分钟搭建商品结算平台!商品、车辆识别一网打尽

    "商品识别"、"人脸识别"、"以图搜图"有什么难?这个在 GitHub 上狂圈 Star 3100+ 的项目就能轻松帮你实现! 它就是全开源、轻量级的图像识别系统 PP-ShiTu。...当然不是,一个优秀的图像识别系统往往在处理实际场景问题过程中需要面临各种挑战: 1.商品类别数以万计:根本没法事先把所有类别都放入训练集; 2.不同商品相似度极高:比如同一种饮料的不同口味,就很可能拥有非常类似的包装...,同时对于商品识别中品类众多、外观相似和更新频繁的痛难点也提供了可参考的示范。...其实商品识别的能力远不仅如此,商超能够通过这项技术进行资产保护,降低运营成本;时尚行业能够通过这项技术,完成对秀场服装的大数据分析,把握时尚潮流;服装行业可以通过商品识别快速匹配产品材质和生产工艺等相关信息...未来,从设计到生产、从物流到销售,AI 商品识别,大有可为! 如果您想详细了解更多飞桨的相关内容,请参阅以下文档。

    1.1K30

    猿设计9——真电商之商品实体识别

    商品系统的设计与构建,从某种程度上来讲,就是围绕SPU和SKU来进行的。但是只有这两个粗浅的概念,并不足以描述一个商品信息,今天,我们一起来聊一聊商品到底有哪些信息,进一步完善商品系统的设计。 ?...说到商品的基本信息,我们不妨回过头来看看商品的发布流程。从页面上去寻找需要持久化的信息,从而达到抽象商品信息的目的。 ?...我们先看商品的基础信息,从页面直观的可以看出,有商品类型、商品名称,以及商品类目属性构成。...需要注意的是商品类型这个属性,考虑到我们构建的是一个B2C的站点,同时还需要兼容多商家2C的设计,那么应该从商品的售卖方去区分商品是属于自营还是第三方。...在编辑商品的时候,一般会要求填写条形码,如果一个商品是有条形码如果存在的话,那么这个条形码会在很多地方用到,比如采购、仓库、出纳,也有利于建立一套标准的商品编码。

    94120

    瑞芯微发布8.1 NNAPI SDK:可开发人脸识别商品识别,疲劳检测等

    适用基于主流模型架构衍生开发的各类应用,如人脸识别、ADAS、商品识别、疲劳检测等。RK3399具有高性能、高扩展、全能型应用特性。...相关应用提供加速支持,具备四大优势特性: 1、兼容性广:标准API,直接支持基于Android NNAPI开发的各类APK应用; 2、通用性强:可支持众多主流模型架构,适用于基于主流模型架构衍生开发的各类应用,包括人脸识别...、ADAS、商品识别、疲劳检测等; 3、性能飙升:在多项任务中可以取得实时性能,如采用MobileNet进行图像识别最高帧率达23.2帧; 4、功耗更低:基于GPU高效计算,满负荷功耗仅1W; 根据瑞芯微...Rockchip官方提供的图像识别及目标检测的APK测试数据来看,主流模型性能表现优异: ?...AI计算正处于爆发增长期,瑞芯微人工智能芯片已广泛应用于图像识别、智能安防、智能驾驶、语音识别、消费类电子等领域。

    2.1K20
    领券