从电商大数据来看,销量Top9的家电品牌,低端价位产品在以价格取胜的品牌中依然占比较高,可以发现,500-1000元价位的定价产品已经崛起。 ?...同时,大数据告诉我们,家电中个性化、休闲娱乐、生活品质、消费电子类、家庭型等元素都被更多的网民所亲睐。 ?
关键字:Python 商品 销售 情况 分析 系统 一、Python商品销售情况分析系统 本系统是python框架的后台管理系统。 服务器端模块包括: 1....软件开发环境及开发工具: 开发语言:python 使用框架:Django 前端技术:JavaScript、VUE.js(2.X)、css3 开发工具:pycharm、Visual Studio Code、HbuildX 数据库...:MySQL 5.7.26(版本号) 数据库管理工具:phpstudy/Navicat或者phpstudy/sqlyog python版本:python3.0及以上 三、功能介绍: 服务器端模块包括:
用JSP servlet和jquery以及SQLServer数据库实现商品销售管理系统。...功能详解: 1.查询商品 2.添加商品 3.删除商品 4.添加销售记录 5.查看销售记录 效果演示: 进入界面 商品显示页面 删除提示 销售记录查询 商品销售系统需要...SQLServer数据库和程序两大部分 一:设计并实现数据库 二:程序设计 在程序正式开始之前先看一下目录结构吧 ==特别注意:==引入sqljdbc4.jar和jquery-3.3.1.js
此方法结合熟练变量语句函数以及常见数据结构列表与字典的基本操作。
常见的二维数据透视表(交叉表)通过横向和纵向展示数据,进行一些简单的汇总运算,而传统的数据透视表功能单一,汇总方式简单,已经无法满足现代大数据量各种条件分析,因此多维透视表应运而生。...多维透视表在功能强大的同时,创建难度也会随之提高 多层分组嵌套的复杂的组织结构 复杂的汇总分析公式的编辑 小计和总计的区分等等要面临的复杂问题 如果用代码实现,可能复杂程度不堪想象,更不用谈大数据量级别下报表加载的性能问题...本文以【商品销售额与赠送金额百分比】这一典型的多维透视表为示例,使用葡萄城报表的矩表控件,通过拖拽来实现多维透视表。 报表结构分析 行: 按照区域和省份,嵌套2层分组。 列:按照月份分组,动态列。...添加数据源和数据集 3. 添加矩表控件 添加矩表控件到设计界面,会发现有类似[ 符号,表示分组,即可根据具体数据动态生成行。会发现设计器下面的矩表分组管理器; 4....添加列分组 根据以上分析,列分组是根据月份而定的,因此只需要默认的一个列分组就足够了,所以不需要添加其他列分组; 添加“销售额”,“搭增”,“比例”静态列: 选中“列分组单元格”插入列,选择分组内-右侧
数据分析是数据时代和数据经济里面的“硬实力”,数据分析有一套系统的科学的方法论,简称为“数据分析框架”。 数据分析是什么?为什么要掌握和应用数据分析呢?每一位数据人在玩数据的路上,都可以问问自己。...关于数据分析是什么,可以阅读这篇文章《数据分析到底是什么》 1 数据分析框架,数据分析的方法论和指南针。 ? 2 数据分析流程,数据分析的思考路线和工作步骤。 ?...说明:这两图片摘录埃森哲数据分析方法论 看了数据分析框架和数据分析流程图,数据人很容易想到IBM公司的数据挖掘标准:CRISP-DM,标准如下图所示: ?...这个标准就是数据分析框架和流程的源泉,关于这个标准简要说明如下。...,评价结果,重审过程 部署(deployment):分析结果应用 俗话说“实践出真知”。
数据读取 理解数据 数据清洗 数据分析 1、数据读取 #导入相关模块 import pandas as pd import numpy as np import matplotlib.pyplot as...发现存在异常数据,这里需要对不相关的职位进行去除 df=df.loc[df.position.str.contains('数据|分析|Data|算法|Bi|ETL')] df.shape[0] 3423...考虑数据类的岗位有数据运营、数据挖掘、商业分析师、算法工程师、ETL工程师等 salary_range字段清洗 #观察salary_range字段 df['salary_range'].unique(...4、数据分析 整体思路 数据类岗位整体需求 城市、学历、工作经验对薪水的影响 不同岗位对应的学历要求、薪水分布情况 公司一般会用什么福利待遇来吸引求职者 不同岗位要求的关键技能点是什么 1、数据类岗位整体需求...+list_tag4+list_tag5).value_counts() #数据分析职位相关技能 #数据挖掘职位相关技能
从职场生涯看,成为某领域的数据专家,会是一个更好的筹码。 而路线大致可以划分成四大方向: 数据分析,数据挖掘,数据产品,数据工程。 数据分析/数据运营/商业分析 这是业务方向的数据分析师。...这里更多指互联网行业,偏业务的数据分析师,一般属于运营部门。不少公司也称数据运营或者商业分析。...因为要求高,所以数据挖掘的平均薪资高于数据分析师。 一个分工明确的团队,数据分析师负责将业务需求抽象成一个具体的数据假设或者模型。...此类数据产品经理,更多是注重数据分析能力,擅长用分析进行决策。数据是能力的一部分。 后者,是真正意义上的数据产品经理。...部分归属到技术部的数据分析师,虽然Title叫数据分析(其实应该叫数据分析开发工程师),很多工作也是围绕ETL/DW/BI进行,那么这就是标准的数据工程路线。
摘要:什么叫数据敏感?怎样做数据分析? 一、从数据维度做拆分,让目标更加落地。 我做过近两年的电商运营,其中感触很深的一个点就是从数据的维度对目标做拆分。...四、一篇完整的数据分析报告应该包含哪些内容? 前面讲了一些理论层面的,最后给一个数据分析模板给大家,供参考。 1、首先你需要根据活动目标确定你的目标达成率,完成百分比,提升百分比。...3、转化率分析,也就是漏斗模型分析。前文提到了,漏斗模型需要对比的数据,所以在此处的分析,我们需要列两个漏斗模型。 ?...我们常做的数据分析,是建立在海量数据的情况下,但往往在初创公司,数据系统还不完善,数据量不够的情况下,数据只能作为参考,过分相信数据往往会导致做出错误的判断。...做数据分析,重点不在数据,而在分析,对数据敏感,就是能清楚数据异常背后的原因,这需要经验,也需要你的思考和执行力。希望你可以成为一个对数据敏感的互联网人。 来源:酥酥说----
文/ 于洋 TalkingData高级咨询总监 1.3 游戏数据分析的流程 游戏数据分析整体的流程将分为几个阶段,这几个阶段则是反映了不同企业数据分析的水平,从另一个角度,也是在解析作为一名数据分析人员究竟该如何参与到游戏数据分析业务中...如图1-2所示,对于游戏数据分析系统及数据的利用,我们分为了五个阶段,方法论、数据加工、统计分析,提炼演绎、建议方案。从工程技术、统计分析、数据挖掘以及用户营销几个方面进行了覆盖和研究。 ?...图1-2游戏数据分析流程 1.3.1方法论 方法论是数据分析的灵魂,是解决问题的普遍原则,贯穿分析始终的思想指导。这个阶段决定了我们如何埋点数据,如何设计分析指标,如何采集,如何组织数据。...统计分析是商业智能的一方面,商业智能应用还包括决策支持系统(DSS)、查询和报告、在线分析处理(OLAP)、预测和数据挖掘,统计分析则是整理数据和分析数据的综合。...所有的分析师不是为了分析数据而分析数据,崇尚数据,信仰数据,但不要盲目。
二、数据分析的应用 数据分析的数学基础在20世纪早期就已确立,但计算机出现后,规范和自动化的分析才具备可行性。现在,数据分析已经广泛地应用到了各个领域。...打开各种招聘网站,越来越多的岗位开始要求『具备一定的数据分析能力』。同样参与面试的两个优秀候选人,具备数据分析能力的那个有更大的机会拿到Offer。 (2)学习数据分析可以得到更多的晋升机会。...(3)学习数据分析拓宽就业方向。 大中型企业(尤其是头部企业),都设置有『数据分析』岗位,例如数据分析师、数据科学家等等。目前各种数据分析岗位招聘需求都相对较大。...(4)学习数据分析可以参与公司的决策核心。...(2)掌握数据分析的人才为企业的发展带来更多的可能。 通过市场数据分析和用户数据分析,可以为目标用户提供更精准的产品和夫,从而提高企业营收规模。
2.缺乏以数据辅助企业经营的有效机制 对日常数据的应用不足,不能有效的通过数据报表分析指导一线经营单位(战区、门店)经营管理;经营分析数据缺乏有效的整合、分析、呈现,因此无法支撑各层级管理人员进行决策参考...围绕核心业务的解决方案 结合痛点,从整体经营、渠道拓展、门店运营、商品销售四个方面进行数据优化与支撑。...1.整体经营分析 从区域销售、门店运营、商品销售、库存等多个方面对企业经营的关键指标进行整体监控,如全方位展现商品在各区域的销售情况和市场竞争力、展示更细化的各维度的销售业绩达成情况、展示整体销售业绩的预实对比...4.商品销售分析 构建了商品结构、商品新品生命周期、商品贡献度、促销商品、营销策略、商品组合销售情况等方面的分析,帮助商品运营中心有效分析、确定在各区域不同商品的角色定位,寻找在特定门店商圈范围内的个性化商品需求...依据对商品销售数据分析,快速匹配商品与市场消费需求的关联,不断调整商品,优化商品的运营规划和研发设计。
然而,在当今的商场上,还有另外一类企业不是通过简单粗暴的价格战,而是通过对数据的充分使用和挖掘而在商战中获胜的。...亚马逊在利润并不丰厚的图书行业竞争中取胜的根本原因在于对数据的战略性认识和使用,在大家还都不太明白什么是电子商务时,亚马逊已经通过传统门店无法比拟的互联网手段,空前地获取了极其丰富的用户行为信息,并且进行深度分析与挖掘...如果把所有可以采集的数据整合并进行衍生,一个用户的购买可能会受数千个行为维度的影响。对于一个一天 PU 近百万的中型电商上,这代表着一天近 1TB 的活跃数据。...亚马逊通过对这些行为信息的分析和理解,制定对客户的贴心服务及个性化推荐。...纵观国内外成功的电商企业,对用户行为信息的分析和使用,无不在这个兵家必争之地做大量投入。他们对数据战略性的高度认识和使用,非常值得国内的电商学习和借鉴。
相信很多朋友们都接触过数据分析,如何写一份数据分析报告?!
【前言】本文对于大数据征信做了透彻的分析,启示了国内存在非常好的投资机会,本文有很好的借鉴意义。希望本文作者联系我们。...本文结合美国的金融环境,对ZestFinance进行简要介绍,分析大数据征信产生的背景,剖析大数据征信技术,并全面客观地阐述了大数据征信技术对于中国互联网金融和征信业未来发展的借鉴意义。...ZestFinance对大数据技术的应用主要从大数据采集和大数据分析两个层面为缺乏信用记录的人挖掘出信用。...其中,ZestFinance开发了10个基于机器学习的分析模型,对每位信贷申请人的超过1万条数据信息进行分析,并得出超过7万个可对其行为做出测量的指标,在5秒钟内就能全部完成。...(3)ZestFinance的大数据分析模型也给信用风险管理带来复杂性的挑战。
对于异常数据的分析,相信每位数据分析师都不陌生,对于业务部门来说同样很希望了解数据分析的思路。...去年同期也写过类似的一篇异常数据分析文章,过了一年后有了更进一步的思路和想法,因此再次分享一下,对于数据分析师常见的“异常数据分析”。 分析思路包括以下5个步骤: 1....一般来说,业务数据下降这类问题会是业务方主动提出的。当然作为数据分析师也可能凭借数据敏感,发现异常数据。 这个步骤主要思考4个小问题: 什么叫异常数据? 异常数据真的是问题吗?对比标准是什么:KPI?...小结:异常数据分析属于“事后诸葛亮”式的后验分析,做得好也是可以发现业务中存在问题的,但同时提需要提醒数据一定要形成闭环,即从业务中来,更需要回到业务中去,落实到业务执行,分析才不会白费...附1:异常数据分析流程(去年) 附2:此图为一些分析视角,仅供参考
前言 数据分析的数据模型是决策支持系统的重要组成部分,它通过对大量数据的收集、整理、分析和挖掘,为企业提供有价值的信息,以支持企业的战略规划和日常运营。...数据模型的选择和应用,直接关系到数据分析的准确性和有效性,进而影响企业的决策质量和市场竞争力。 在构建数据模型时,首先要明确分析的目标和需求。...综上所述,数据分析的数据模型是企业决策支持系统的重要组成部分,其选择和应用需要综合考虑分析目标、数据质量、计算资源等多个因素。...只有合理选择和运用数据模型,才能充分发挥数据分析的价值,为企业的发展提供有力支持。...从定义上看,方差分析是分析数据间均值的差异,称其为“方差分析”是因为关于均值差异的结果是通过分析方差得到的。 先来看一个方差分析的应用场景。
,即对比、细分、溯源,也被数据分析的三板斧,支撑数据分析的核心应用,具体来说: [数据分析三板斧] 对比:成对地比较。...在分析数据时,增加分析的维度,改变看待问题的视角,能够在更细分的级别上分析数据,洞察到更多的知识,增加数据分析的深度。...三、数据『溯源』 溯源,就是到细节数据中去,查看原始数据,反思用户的行为。在做数据分析时,一定要明白你分析得数据是二手的,还是一手的。...[数据分析思维-数据『溯源』] 一手数据是最原始的数据,包含的内容最丰富,但数据可能不规范。...二手数据是经过处理的,甚至是分析之后的数据,这些数据可能是片面的、阉割的、面向特定主题的,由此得出的分析结果也可能有失公允。
Python数据分析模块 前言 在当今数字化时代,数据分析已经变得不可或缺。而Python,作为一种通用编程语言,其丰富的库和强大的功能使得它成为数据分析领域的佼佼者。...Pandas则是一个开源的、提供高性能、易于使用的数据结构和数据分析工具的Python库。它提供了数据清洗、数据转换、数据处理等一系列功能,使数据分析变得更加简单高效。...在医疗研究中,Python数据分析模块可以帮助我们分析病人的医疗数据、基因数据等,从而推动医学的进步。...无论是数据科学家、工程师还是其他领域的专业人士,都可以通过学习和掌握Python数据分析模块来提高工作效率、提升数据分析能力。随着大数据时代的到来,Python数据分析模块的应用前景将更加广阔。...二、Pandas模块 Pandas是Python环境下非常重要的数据分析库。当使用Python进行数据分析时,通常都指的是使用Pandas库作为分析工具对数据进行处理和分析。
前言 大数据伦理风险分析在当前数字化快速发展的背景下显得尤为重要。随着大数据技术的广泛应用,企业、政府以及个人都在不断地产生、收集和分析海量数据。...然而,这些数据的利用也带来了诸多伦理风险,如隐私泄露、数据滥用、算法偏见等。因此,对大数据伦理风险进行深入分析,并采取相应的防范措施,对于保障数据安全、维护社会公平正义具有重要意义。...首先,大数据的收集和处理过程中存在着隐私泄露的风险。在未经用户同意的情况下,部分企业和机构可能会收集用户的个人信息,如浏览记录、购物习惯等,进而进行精准营销或数据分析。...一些机构可能会利用手中的大数据资源,对用户进行过度分析或不当利用,如歧视性定价、不公平竞争等。这种滥用数据的行为不仅违反了市场公平竞争的原则,也损害了消费者的权益。...在对大数据多源数据进行综合分析,可以挖掘出更多的个人信息,加剧了个人信息泄露的风险。"匿名化”的可信度? 大数据技技术安全漏洞,导致数据泄露、伪造和失真等问题。
领取专属 10元无门槛券
手把手带您无忧上云