首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

回归分析

回归:可以对复杂和非线性的数据进行建模;适用数值型和标称型数据。 1、 CART:classification and regression trees(分类回归)。...回归(连续型)分类(离散型): 回归:假设叶节点是常数值,这种策略认为数据中的复杂关系可以用树结构来概括。 度量数据的一致性:在给定节点时计算数据的混乱度。...用该误差计算准则,去构建数据集上的回归。 实现choosebestsplit的切分:用最佳方式切分数据集,生成对应的叶节点,即切分后误差最小。...2、 模型:需要在每个叶节点上构建出一个线性模型。 把叶节点设定为分段线性函数,piecewise linear 是指由多个线性片段组成。...3、 决策:是一种贪心算法,不关心全局是否最优。ID3需事先将连续型转换为离散型数据,每次选取当前最佳特征来分割数据并按照该特征所有可能取值来切分。

79360
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    CART决策原理(分类回归

    本文目录 CART理解 分类CART生成 2.1 基尼指数 2.2 应用基尼指数生成CART分类实例 回归CART生成 3.1 误差平方和 3.2 应用误差平方和生成CART回归实例 CART...CART(classification and regression tree):又称为分类回归,从名字可以发现,CART既可用于分类,也可以用于回归。...为了大家对CART有一个更清晰的理解,先放一张理解图: ? 从上图知CART决策分为分类CART回归CART,只是在特征选择时一个采用基尼指数,一个采用残差平方和。...把误差平方和应用到CART回归中,数学表达式如下: ?...2 应用误差平方和生成CART回归实例 为了大家更清晰地理解公式,接下来阐述应用误差平方和挑选特征建立CART回归的具体实例。 ?

    17.4K73

    分类回归算法---CART

    一、算法介绍 分类回归算法:CART(Classification And Regression Tree)算法也属于一种决策,和之前介绍了C4.5算法相类似的决策。...二、决策的生成 CART算法的决策采用的Gini指数选择最优特征,同时决定该特征的最优二值切分点。算法在构建分类回归时有些共同点和不同点,例如处理在何处分裂的问题。...剪枝的方法分为前剪枝和后剪枝:前剪枝是指在构造的过程中就知道哪些节点可以剪掉,于是干脆不对这些节点进行分裂,在分类回归中使用的是后剪枝方法,后剪枝方法有多种,比如:代价复杂性剪枝、最小误差剪枝、悲观误差剪枝等等...对于分类回归中的每一个非叶子节点计算它的表面误差率增益值α,可以理解为误差代价,最后选出误差代价最小的一个节点进行剪枝。。 ? ?...分类回归算法---CART

    2.9K80

    CART 分类与回归

    本文结构: CART算法有两步 回归的生成 分类的生成 剪枝 ---- CART - Classification and Regression Trees 分类与回归,是二叉,可以用于分类,也可以用于回归问题...分类的输出是样本的类别, 回归的输出是一个实数。 ---- CART算法有两步: 决策生成和剪枝。...决策生成:递归地构建二叉决策的过程,基于训练数据集生成决策,生成的决策要尽量大; 自上而下从根开始建立节点,在每个节点处要选择一个最好的属性来分裂,使得子节点中的训练集尽量的纯。...不同的算法使用不同的指标来定义"最好": 分类问题,可以选择GINI,双化或有序双化; 回归问题,可以使用最小二乘偏差(LSD)或最小绝对偏差(LAD)。...这里用代价复杂度剪枝 Cost-Complexity Pruning(CCP) ---- 回归的生成 回归模型表示为: ?

    1.1K30

    分类回归算法---CART

    一、算法介绍 分类回归算法:CART(Classification And Regression Tree)算法也属于一种决策,和之前介绍了C4.5算法相类似的决策。...CART算法是由以下两部组成: (1)决策生成:基于训练数据集生成的决策,生成的决策要尽量大; (2)决策剪枝:用验证数据集对已生成的进行剪枝并选择最优子树,用损失函数最小作为剪枝的标准...二、决策的生成 CART算法的决策采用的Gini指数选择最优特征,同时决定该特征的最优二值切分点。算法在构建分类回归时有些共同点和不同点,例如处理在何处分裂的问题。...剪枝的方法分为前剪枝和后剪枝:前剪枝是指在构造的过程中就知道哪些节点可以剪掉,于是干脆不对这些节点进行分裂,在分类回归中使用的是后剪枝方法,后剪枝方法有多种,比如:代价复杂性剪枝、最小误差剪枝、悲观误差剪枝等等...对于分类回归中的每一个非叶子节点计算它的表面误差率增益值α,可以理解为误差代价,最后选出误差代价最小的一个节点进行剪枝。。 ?

    1.6K90

    常见面试算法:Logistic回归回归

    Logistic 回归 概述 Logistic 回归 或者叫逻辑回归 虽然名字有回归,但是它是用来做分类的。...须知概念 Sigmoid 函数 回归 概念 假设现在有一些数据点,我们用一条直线对这些点进行拟合(这条直线称为最佳拟合直线),这个拟合的过程就叫做回归。...Logistic 回归 原理 Logistic 回归 工作原理 每个回归系数初始化为 1 重复 R 次: 计算整个数据集的梯度 使用 步长 x 梯度 更新回归系数的向量 返回回归系数 Logistic...Logistic回归 和 最大熵模型 Logistic回归和最大熵模型 都属于对数线性模型 (log linear model)。...多标签分类 逻辑回归也可以用作于多标签分类。 思路如下: 假设我们标签A中有a0,a1,a2....an个标签,对于每个标签 ai (ai 是标签A之一),我们训练一个逻辑回归分类器。

    74330

    常见面试算法:回归剪枝

    回归 概述 我们本章介绍 CART(Classification And Regression Trees, 分类回归) 的构建算法。该算法既可以用于分类还可以用于回归。...回归 场景 我们在第 8 章中介绍了线性回归的一些强大的方法,但这些方法创建的模型需要拟合所有的样本点(局部加权线性回归除外)。...该算法既可以用于分类还可以用于回归。 1、回归 原理 1.1、回归 原理概述 为成功构建以分段常数为叶节点的,需要度量出数据的一致性。第3章使用进行分类,会在给定节点时计算数据的混乱度。...1.6、回归 项目案例 1.6.1、项目概述 在简单数据集上生成一棵回归。...4、回归 项目案例 4.1、项目案例1: 回归与标准回归的比较 4.1.1、项目概述 前面介绍了模型回归和一般的回归方法,下面测试一下哪个模型最好。

    1.4K20

    机器学习算法实践:回归

    4、节点的数据量小于预先定好的阈值 回归的Python实现 本部分使用Python实现简单的回归,并对给定的数据进行回归并可视化回归曲线和树结构。...创建回归并可视化 看到这种分段的数据,回归拟合它可是最合适不过了,我们创建回归: ? 通过Python字典表示的回归树结构: ?...生成回归图片: ? ? 其中节点上数字代表:特征编号: 特征分割值 绘制回归回归曲线 有了回归,我们便可以绘制回归回归曲线,看看它对于分段数据是否能有较好的回归效果: ? ?...左右两边的数据的分布基本相同但是使用相同的参数得到的回归却完全不同左边的回归只有两个分支,而右边的分支则有很多,甚至有时候会为所有的数据点得到一个分支,这样回归将会非常的庞大, 如下是可视化得到的两个回归...绘制线性回归回归回归曲线(黄色会回归曲线,红色会线性回归): 可见回归方法在预测复杂数据的时候会比简单的线性模型更有效。 ?

    1.6K90

    机器学习实战之回归

    回归”与“” 在讲解回归之前,我们看看回归巧妙结合的原因。 线性回归的弊端 线性回归需要拟合所有样本点,在特征多且特征关系复杂时,构建全局模型的想法就显得太难。...实际生活中,问题很大程度上不是线性的,而是非线性的,所以线性回归的很容易欠拟合。 传统决策弊端与改进 决策可以解决数据的非线性问题,而且直观易懂,是否可以通过决策来实现回归任务?...回归 基于CART算法,当叶节点是分类值,就会是分类算法;如果是常数值(也就是回归需要预测的值),就可以实现回归算法。这里的常数值的求解很简单,就是该划分数据的均值。...模型 回归的叶节点是常数值,而模型的叶节点是一个回归方程。...数据情况 读入数据进行可视化,你会发现,这种数据如果用回归拟合效果不好,如果切分为两段,每段是一个回归方程,就可以很好的对数据进行拟合。

    48550

    机器学习实战之回归

    [1240] “回归”与“” 在讲解回归之前,我们看看回归巧妙结合的原因。 线性回归的弊端 线性回归需要拟合所有样本点,在特征多且特征关系复杂时,构建全局模型的想法就显得太难。...实际生活中,问题很大程度上不是线性的,而是非线性的,所以线性回归的很容易欠拟合。 传统决策弊端与改进 决策可以解决数据的非线性问题,而且直观易懂,是否可以通过决策来实现回归任务?...回归 基于CART算法,当叶节点是分类值,就会是分类算法;如果是常数值(也就是回归需要预测的值),就可以实现回归算法。这里的常数值的求解很简单,就是该划分数据的均值。...[1240] 模型 回归的叶节点是常数值,而模型的叶节点是一个回归方程。...数据情况 读入数据进行可视化,你会发现,这种数据如果用回归拟合效果不好,如果切分为两段,每段是一个回归方程,就可以很好的对数据进行拟合。

    32510

    Python 机器学习算法实践:回归

    最后对回归和标准线性回归进行了对比。 正文 在之前的文章中我总结了通过使用构建决策来进行类型预测。...节点的数据量小于预先定好的阈值 回归的Python实现 本部分使用Python实现简单的回归,并对给定的数据进行回归并可视化回归曲线和树结构。...: dot -Tpng ex0.dot -o ex0_tree.png 其中节点上数字代表:特征编号: 特征分割值 绘制回归回归曲线 有了回归,我们便可以绘制回归回归曲线,看看它对于分段数据是否能有较好的回归效果...(黄色会回归曲线,红色会线性回归): 可见回归方法在预测复杂数据的时候会比简单的线性模型更有效。...总结 本文对决策用于连续数值的回归预测进行了介绍,并实现了回归, 剪枝和模型以及相应的树结构输出可视化等。对于模型也给予了相应的Python实现并针对分段线性数据进行了回归测试。

    1.3K91

    回归的原理及Python实现

    提到回归,相信大家应该都不会觉得陌生(不陌生你点进来干嘛[捂脸]),大名鼎鼎的 GBDT 算法就是用回归组合而成的。本文就回归的基本原理进行讲解,并手把手、肩并肩地带您实现这一算法。...原理篇 我们用人话而不是大段的数学公式,来讲讲回归是怎么一回事。 1.1 最简单的模型 如果预测某个连续变量的大小,最简单的模型之一就是用平均值。...熟悉数据结构的同学自然会想到二叉,这种树被称为回归,顾名思义利用树形结构求解回归问题。 2....实现篇 本人用全宇宙最简单的编程语言——Python实现了回归算法,没有依赖任何第三方库,便于学习和使用。简单说明一下实现过程,更详细的注释请参考本人github上的代码。...回归的实现: 一顿操作猛如虎,加减乘除二叉。 【关于作者】 李小文:先后从事过数据分析、数据挖掘工作,主要开发语言是Python,现任一家小型互联网公司的算法工程师。

    64110

    图解机器学习 | 回归模型详解

    ,实际决策也可以用作回归任务,我们叫作回归。...其中:CART全称Classification And Regression Tree,即可以用于分类,也可以用于回归,这里指的回归就是CART,ID3和C4.5不能用于回归问题。...2)回归的核心思想 要讲回归,我们一定会提到CART,CART全称Classification And Regression Trees,包括分类回归。...回归构建完成后,就完成了对整个输入空间的划分(即完成了回归的建立)。将整个输入空间划分为多个子区域,每个子区域输出为该区域内所有训练样本的平均值。...但我们希望构建最有效的回归:预测值与真实值差异度最小。下面部分我们展开讲讲,回归是如何生长的。

    1.7K41

    【ML】回归算法原理及实现

    在上一篇文章"分类算法原理及实现"中,分类算法可以解决现实中非线性的分类问题,那么本文要讲的就是可以解决现实中非线性回归问题的回归算法。...本文以决策中的CART为例介绍回归的原理及实现。 叶节点分裂指标 通常在CART回归中,样本的标签是一系列的连续值的集合,不能再使用基尼指数作为划分的指标。...生成回归。...为了防止构建好的模型过拟合,通常需要对回归进行剪枝,剪枝的目的是防止回归生成过多的叶子节点。在剪枝中主要分为:前剪枝和后剪枝。...前剪枝是指在生成回归的过程中对的深度进行控制,防止生成过多的叶子节点。

    70610

    回归的原理及Python实现

    提到回归,相信大家应该都不会觉得陌生(不陌生你点进来干嘛[捂脸]),大名鼎鼎的 GBDT 算法就是用回归组合而成的。本文就回归的基本原理进行讲解,并手把手、肩并肩地带您实现这一算法。...原理篇 我们用人话而不是大段的数学公式,来讲讲回归是怎么一回事。 1.1 最简单的模型 如果预测某个连续变量的大小,最简单的模型之一就是用平均值。...熟悉数据结构的同学自然会想到二叉,这种树被称为回归,顾名思义利用树形结构求解回归问题。 2....实现篇 本人用全宇宙最简单的编程语言——Python实现了回归算法,没有依赖任何第三方库,便于学习和使用。简单说明一下实现过程,更详细的注释请参考本人github上的代码。...回归的实现: 一顿操作猛如虎,加减乘除二叉。 【关于作者】 李小文:先后从事过数据分析、数据挖掘工作,主要开发语言是Python,现任一家小型互联网公司的算法工程师。

    52020
    领券