在电脑屏幕监控软件中,图像识别算法就像是一个电脑版的侦探,用着最先进的计算机视觉技术,自动监视和分析屏幕上的图像内容。图像识别算法可以轻松地识别出屏幕上的物体、文字、图案等等,不管它们是多么复杂或是隐蔽。无论你是在监控系统里还是在视频编辑软件中使用它,都会让你感觉到“嗯,这真的是太强大了!”下面就为大家简单的介绍一下图像识别算法在电脑屏幕监控软件中优势与实用性。
3.内容识别:点击需要修复的区域。软件会自动在他的周围进行取样,通过计算对其进行光线和明暗的匹配,并进行羽化融合
Adobe Illustrator是一款广泛使用的矢量图形编辑软件,常用于电商设计、品牌标识设计、插图等领域。
他们给现有的激光雕刻机安上了一个AI,就可以自动识别30种不同的切割材料,准确率高达98%。
修补工具用于移去不需要的图像元素。修补工具的“内容识别”选项可合成附近的内容,以便与周围的内容无缝混合。
你的新手机不错,借我刷一下脸? 人脸识别技术在智能手机上已经是标配,今天的我们刷脸解锁、刷脸支付就像吃饭喝水一样自然,以至于疫情期间戴口罩无法解锁手机时,我们会感到很不习惯。 在享受便利的同时,却鲜有用户去关心安全问题。虽然手机厂商往往会在发布手机的时候宣称「破解人脸识别的几率低至百万分之一」,但双胞胎解锁对方手机的事情仍然偶尔会上新闻。 最近一段时间,来自清华的 RealAI(瑞莱智慧)向我们展示了一项更为简单的攻击技术…… 在一副眼镜的攻击下,19 款使用 2D 人脸识别的国产安卓手机无一幸免,全部被快速破解。 具体来说,RealAI 团队选取了 20 款手机做了攻击测试,覆盖不同价位的低端机与旗舰机。
本文主要介绍如何使用OpenCV中的结构光(Structured-Light)模块完成三维重建。(公众号:OpenCV与AI深度学习)
舒石 李林 编译整理 量子位 出品 | 公众号 QbitAI 人脸识别越来越常见,今年春运已经能刷脸进站,iPhone的相册就能用人脸分类照片,社交网站上能根据人脸标记照片。然而如同央视315提醒的那样,这项技术距离无懈可击还有一段距离。 比如说,一副成本1块钱的眼镜,就能骗过人脸识别的AI。 一个能够愚弄人脸识别AI的眼镜 来自卡内基梅隆大学(CMU)的研究人员表示,佩戴专门设计过的眼镜架,可以愚弄最先进的面部识别软件。一副眼镜,不单可以让佩戴者消失在人工智能识别系统之中,而且还能让AI把佩戴者误以为
作为一款常用的插图设计软件,Adobe Illustrator受到了越来越多的关注。该软件在平面设计、页面设计、图案设计等方面起到了重要作用,是设计师和插画画家们最喜欢使用的工具之一。
假视频假新闻越来越常见,而使用Photoshop和其他图像处理软件P图的也比比皆是,伯克利和Adobe的研究人员已经创建了一个工具,不仅可以判断面部是否被P过,还可以给出将其复原的建议。
本文介绍了自识别标记及其在相机标定、机器人导航和增强现实等领域的应用。自识别标记可以自动建立三维空间坐标已知的点与图像上二维投影点之间的对应关系,使得相机标定更加高效和准确。在机器人导航方面,自识别标记可以辅助机器人在复杂环境中进行视觉定位和导航。在增强现实方面,自识别标记图案可以作为识别图布置在自然场景下,实现互动游戏、创意广告等应用。
关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第二 【Python】:排名第三 【算法】:排名第四 前言 卷积神经网络在深度学习领域是一个很重要的概念,是入门深度学习必须搞懂的内容。 CNN图像识别的关键——卷积 当我们给定一个"X"的图案,计算机怎么识别这个图案就是“X”呢?一个可能的办法就是计算机存储一张标准的“X”图案,然后把需要识别的未知图案跟标准"X"图案进行比对,如果二者一致,则判定未知图案即是一个"X"图案。 而且即便未知图案可能有一些平移或稍稍变形,依然能辨别出它是一
最古老的针织物品可以追溯到中世纪的埃及,是一双手工制作精致的袜子。几个世纪以来占据我们衣橱的都是手工制衣,但最近高科技针织机的介入改变了我们的制衣方式。
魔性的背景音乐、酷炫的AR特效、多元的内容题材,让大众欲罢不能的短视频App正在成为内容生产和传播主要渠道之一。
前面如果已经在Jetson TX2安装好JetPack和Caffe(【入门篇】一个小白在Jetson TX2上安装caffe的踩坑之旅 ),我们接下来可以尝试在Jetson TX2上跑一些深度学习的测试代码。 NVIDIA提供了套教程,教程里包含了开发指南、TensorRT示例代码,甚至包括ImageNet和DetectNet示例在内的预先训练的网络模型,让您能够在Jetson TX1/TX2开发套件上加载并运行预训练的深层神经网络,并学习如何使用自己的数据集重新培训网络用来生产演示(点击阅读原文,观看完整
即使在光线良好的情况下,酒杯的小瑕疵或隐形眼镜中的微小褶皱也很难找出。而在几乎完全黑暗的情况下,这种透明特征或物体的缺陷几乎不可能被发现。为了解决这个问题,麻省理工学院的工程师开发出一种能够在黑暗中揭示这些难以发现的细节的技术。
但现在,RealAI团队有了一个办法,只需一副定制的“眼镜”,就可以秒秒钟破解手机的面部识别系统。
Adobe Photoshop 2023是全球范围内最受欢迎的设计软件之一,也是当今数字创意行业的标志性产品。该软件对图像处理、修复、编辑、优化等方面进行了全面升级,满足了用户对于图像处理的多种需求,是数字化时代的图像处理巨匠。
在这个信息爆炸的数字化时代,扫描工具已经成为我们日常工作和学习中不可或缺的助手。最近,扫描全能王推出了革命性的“智能高清滤镜2.0”,本次更新后,智能高清滤镜能够智能识别并优化扫描过程中的各种问题。无论是光线不均、背景杂乱,还是文档本身的折痕和污渍,它都能一一化解,呈现清晰、准确的扫描结果。
上一篇文章基于3DSOM软件的侧影轮廓方法空间三维模型重建详细介绍了基于3DSOM的侧影轮廓方法物体空间三维模型重建;接下来,我们将在一款新的空间模型建立软件——EinScan-S中,完成一种新的空间三维模型重建方法——编码结构光方法。
从【DL笔记1】到【DL笔记N】,是我学习深度学习一路上的点点滴滴的记录,是从Coursera网课、各大博客、论文的学习以及自己的实践中总结而来。从基本的概念、原理、公式,到用生动形象的例子去理解,到动手做实验去感知,到著名案例的学习,到用所学来实现自己的小而有趣的想法......我相信,一路看下来,我们可以感受到深度学习的无穷的乐趣,并有兴趣和激情继续钻研学习。 正所谓 Learning by teaching,写下一篇篇笔记的同时,我也收获了更多深刻的体会,希望大家可以和我一同进步,共同享受AI无穷的乐趣。
本论文标题《A Contactless Fingerprint Recognition System》
现在,我打开Google Photos,输入“海滩”,就能查看我过去10年里去过的所有海滩的照片。我从来没有浏览过我的照片,也没有一张张给它们贴标签;相反,谷歌是根据照片本身的内容来识别海滩的。
文章:SL Sensor: An open-source, real-time and robot operating system-based structured light sensor for high accuracy construction robotic applications
时至今日有许多的方式来跟踪访客,例如使用存在用户端的cookie技术,这种技术现已被大部分公司遗弃,如今出现了一种新的方法替代cookie可以来跟踪用户。 在这两年中,许多网站和跟踪软件都开始利用HTML5 canvas指纹。PS:Canvas是HTML5中动态绘图的标签。 每个浏览器生成不一样的图案 从根本上来说,每一种浏览器都会使用不同的图像处理引擎,不同的导出选项,不同的压缩等级,所以每一台电脑绘制出的图形都会有些许不同,这些图案可以被用来给用户设备分配特定编号(指纹),也就是说可以用来识别不同用户。
基于AI人脸定位与风水命理,对照片人物进行眼口鼻关键点定位,为人脸标记分析,准确识别多种面相特征,输出面相占卜结果。适用各种营销互动活动,引流等。
如果你的图片中有一些不满意的瑕疵,不必动用庞大PS来兴师动众,只需使用Inpaint即可轻松搞定。只需用它的“魔术笔”涂抹照片中需消除的对象,然后点击处理图像按钮即可神奇地让它完美消失。虽说是去水印工具,但利用它还可轻松地将图片中你觉得碍眼的任何物体变走,让您轻松摆脱照片上的水印、划痕、污渍、标志!它通过非常先进的图像识别算法,智能地将抹除后的区域补充回来,从而实现魔法般的效果。
本文为3Blue1Brown之《What is a Neural Network?》学习笔记 观看地址:bilibili.com/video/av15532370 这集Grant大佬假设大家都没有神经
photoshop2021 for mac正式版时适用于最新的m1芯片mac电脑、macbook,并且兼容之前的苹果电脑。软件下载之后直接安装就可以用,云服务不能使用。该版本是目前最新的版本,欢迎需要的用户来下载!
------------------------------------------------------------------
然而,这些并非新概念。第一个人工神经网络(ANN)是在 40 年代引入的。那么为什么最近的热点话题都是关于神经网络和深度学习的呢?我们将在 GPU 和机器学习的一系列博客文章中探讨这些概念。
GAIR 今年夏天,雷锋网将在深圳举办一场盛况空前的“全球人工智能与机器人创新大会”(简称GAIR)。大会现场,雷锋网将发布“人工智能&机器人Top25创新企业榜”榜单。目前,我们正在四处拜访人工智能、机器人领域的相关公司,从而筛选最终入选榜单的公司名单。如果你的公司也想加入我们的榜单之中,请联系:2020@leiphone.com 去年CES大会期间,英特尔首次展示了Realsense实感技术,一年之后也就是上个月的2016 IDF大会上,英特尔终于向外界推出了Realsense技术的SDK和机器人开发
工业4.0时代,三维机器视觉备受关注,目前,三维机器视觉成像方法主要分为光学成像法和非光学成像法,这之中,光学成像法是市场主流。
夏乙 编译整理 量子位 出品 | 公众号 QbitAI 我们总是听说人工智能在图像识别上超越了人类,刷脸也逐渐成了生活中司空见惯的事儿。这些图像识别技术背后,通常是深度神经网络。 不过,神经网络究竟是
机器视觉一般由工业光源,图像采集单元,图像处理单元,图像处理软件及网络通讯装置等构成。在自动化工业质量控制和在线检测领域,2D和3D技术都具有重要的作用。如何将两者结合起来创建一个更可靠、高效的机器视觉检测系统,首先要认识两者的各自优势和局限性。
我们平时都经常见到二维码,用手机扫一扫就会显示当中的内容,内容大多是url的格式,方便人们访问站点。不过对于人来说,直接看二维码却并没有任何良好的印象。因此很多商家为了让自家的二维码更加形象,会想方设法地让自家的二维码更加形象生动,于是也就诞生出了很多种图像植入的方法。今天就把这些方法稍微汇总一下。
文章:Automatic Detection of Checkerboards on Blurred and Distorted Images
给概览功能的可视化作为一个研究领域,并推出了FlashTorch- 一个开放源码的功能可视化工具包建在PyTorch神经网络。
iShot Pro是一款非常优秀的Mac截图软件,软件非常易于操作,主页面还设置了学习教程,可以轻松玩转软件所有功能,并且功能非常强大,不仅可以实现多种截图方式,还可以进行标注、贴图、取色、录屏、录音、OCR识别、截图翻译等功能,非常值得入手。
CNN简介 文末附三份深度学习视频资源 后台回复关键词(20180310) 目录: 一些视频资源和文章 CNN简介 图像即四维张量? 卷积的定义 CNN如何工作 最大池化与降采样 交流层 一些资源 卷积网络对图像进行物体辨识,可识别人脸、人类个体、道路标志、茄子、鸭嘴兽以及视觉数据中诸多其他方面的内容。卷积网络与运用光学字符辨识进行的文本分析有重合之处,但也可用于对离散文本单元以及声音形式的文本进行分析。 卷积网络(ConvNets)在图像辨识上的效能,是如今全球对深度学习产生兴趣的重要原因。卷积网络正推动
刚刚,清华大学的一条重大发现,利用人脸识别技术的漏洞,“ 15分钟解锁19个陌生智能国产手机 ”的事件,引发无数网友关注。
平面图案标定姿势的选择很少被考虑——但标定精度很大程度上取决于它。本文提出了一种姿态选择方法,可以找到一个紧凑和鲁棒的标定姿态集,并适合于交互式标定。奇异的姿态会导致解决方案不可靠,而减少姿态的不确定度对标定有利的。为此,我们使用不确定性传播原理。
自16年Google的AlphaGO击败李世石,并再接再厉毫不留情的击垮棋坛一哥柯洁后,人工智能中的分支领域:深度学习和神经网络瞬间火遍大江南北。如今深度学习几乎成为人工智能的代名词,特别是它是最能让人工智能技术在现实产业中真正落地,并产生实用价值的人工智能技术,iPhoneX的人脸识别,百度和特斯拉的自动驾驶技术,微软的对话机器人小冰,以及苹果的Siri,亚马逊的智能音箱等技术无不基于深度学习技术。 从理念上看,我们很容易把深度学习,机器学习和人工智能所混淆。他们的关系如下: 人工智能 > 机器学习 >
来自密歇根大学、网易伏羲AI实验室、北航的团队共同研发了一款AI项目——Neural Magic Eye,就专门从2D图像中识别3D物体来。
---- 新智元报道 作者:朱小佩 编辑:好困 【新智元导读】众所周知,打印一张图揣身上就能骗过图像识别,那你知道如何才能骗过红外识别么? 在疫情期间,红外行人识别系统被广泛应用。 这得益于热红外识别的系统的两个重要的优势: 1. 对于温度敏感,红外图像的成像利用了物体的热辐射,所以可以反映出物体的温度,这一特性对于人体的非接触式测温具有重要的应用。 2. 红外成像具有一定的「透视」特性,即使人体被一些衣物遮挡,但是热辐射依然可以透过衣物被接收器感知到,所以可以透过遮挡进行成像。 尽管目前红外行
首先,卷积网络认知图像的方式不同于人类。因此,在图像被卷积网络采集、处理时,需要以不同方式思考其含义。 卷积网络将图像视为体,也即三维物体,而非仅用宽度和高度测量的平面。这是因为,彩色数字图像具有红-绿-蓝(RGB)编码;通过将这三色混合,生成人类肉眼可见的色谱。卷积网络将这些图像作为彼此独立、逐层堆叠的三层色彩进行收集。 故而,卷积网络以矩形接收正常色彩的图像。这一矩形的宽度和高度由其像素点进行衡量,深度则包含三层,每层代表RGB中的一个字母。这些深度层被称为通道。 我们以输入量和输出量来描述经过卷积网络
领取专属 10元无门槛券
手把手带您无忧上云