首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

图像处理-下采样

图像处理之下采样 下采样 下采样(subsampled)或降采样(downsampled))的目的有: 1、使得图像符合显示区域的大小; 2、生成对应图像的缩略图; 3、处理大型图像减少运算量。...可见在大型图片下采样时还是尽量避免for嵌套循环,转而用矩阵向量的计算方式,这样会省不少时间 。 DCT域下采样算法 在传统的图像,视频的后处理阶段,一般会涉及到图像大小的缩放问题。...那么,能否在图像解码的过程中实现图片的缩小?...% dct频率域下采样算法,根据下面论文提到的算法实现 % 一种高效的DCT域图像下采样方法 中国图像图形学报 2005年4月 %程序作者: celery.chen@yahoo.com.cn ,2010...pfun2 = @idct2; J = blkproc(z_dst,[8 8],pfun2); J = uint8(round(J)); figure(2); imshow(J); 参考文章-视频图像处理中的频域下采样技术

81720

【深度学习实验】图像处理(二):PIL 和 PyTorch(transforms)中的图像处理与随机图片增强

一、实验介绍   图像处理是计算机视觉和深度学习领域中不可或缺的一部分,本文将介绍Python Imaging Library(PIL)和PyTorch中的图像处理与增强方法,以及如何随机对图像进行增强操作...本实验将将通过PIL库完成图片生成、合成、添加文字等操作,并分别PIL使用PyTorch中的transforms模块实现图像增强功能。...缩放和合成图像   将绿色图像缩放并放置在蓝色图像中心,使其占据大约70%的区域。...定义随机图像增强函数   函数接受自然图像作为输入,并以50%的概率随机应用以下增强方法:旋转、翻转、亮度调整、颜色调整、对比度调整、锐度调整和CONTOUR滤波器。...PyTorch:使用transforms实现随机图像增强 a. 定义PyTorch随机图像增强函数   在PyTorch中,使用transforms模块可以轻松实现相同的随机图像增强功能。

32110
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数字图像处理学习笔记(二)——图像的采样和量化

    数字图像处理(Digital Image Processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。...本专栏将以学习笔记形式对数字图像处理的重点基础知识进行总结整理,欢迎大家一起学习交流!...专栏链接:数字图像处理学习笔记 一、数字图像的像素表示 像素的概念:数字图像由二维元素组成,每一个元素具有一个特定的位置(x,y)和幅值f(x,y),这些元素就称为像素。 ?...---- 二、图像的采样和量化 ★大多数传感器的输出是连续电压波形 ★为了产生一幅数字图像,需要把连续的 感知数据转化为数字形式 ★这包括两种处理:采样和量化 ?...★图像的采样和量化 ★图像的采样 图像空间坐标的数字化 用数字表示位置(点的坐标) 空间坐标(x,y)的数字化 采样对应空间分辨率 ?

    1.6K40

    基于序列模型的随机采样

    本文回顾了一系列常用的序列模型采样方法,包括基于蒙特卡洛的随机采样和随机束搜索,以及最近提出的基于Gumbel-Top-K的随机束搜索。表1展示了这三种方法各自的优缺点。...图4 束搜索最终结果 序列模型中的随机采样 从序列模型中采集多个样本有两种经典的方法:基于蒙特卡洛的随机采样和基于蒙特卡洛的束搜索。...基于蒙特卡洛的随机采样 在序列模型中采样的最简单方法就是在贪婪搜索的基础上,在每一步挑选下一个词的时候不是根据它们相应的得分而是根据模型输出的下一个词分布来随机选取一个,这样重复到固定长度或者挑选到句子结束符时停止...基于蒙特卡洛的随机束搜索 基于蒙特卡洛的随机束搜索在采集多个不同样本远比基于蒙特卡洛的随机采样高效。...在每一步中它都是根据随机挑选K个不同词,它无法控制随机采样时的噪声,也就是样本分布的方差跟每一步的的方差相关,而的方差是无法控制的,它可能非常大也可能非常小。

    88920

    马尔科夫随机场(MRF)在图像处理中的应用-图像分割、纹理迁移

    而图像则是一个典型的马尔科夫随机场,在图像中每个点可能会和周围的点有关系有牵连,但是和远处的点或者初始点是没有什么关系的,离这个点越近对这个点的影响越大。...吉布斯采样(gibbs sampling)是利用条件分布进行一系列运算最终近似得到联合分布的一种采样方法,相应的,吉布斯分布就表示这些满足吉布斯分布的分布信息可以通过求相应的条件概率来近似地求这些分布信息的联合分布...MRF,也就是说,图像中某一个像素点可能的概率值分布,只和这个像素点周围的空间像素点信息有关系,而和该图像中剩余的像素点关系,也就是这个像素点对除了它周围的像素点以外的该图像的其他像素点是独立的 我们具体说下利用马尔科夫随机场来实现纹理合成的算法流程...,可以看这里:GITHUB 后记 马尔科夫随机场在深度学习的中的应用有很多,在图像分割中deeplab-v2结合MRF取得了不错的效果,风格迁移中也有结合Gram矩阵和MRF进行纹理迁移,更好地抓取风格图像的局部特征信息...所以深度学习方面你的图像处理,与传统方法的结合是大趋势,值得我们去关注。 有兴趣的童鞋可以关注本篇后续,之后会详细挑一些应用进行讲解。

    2K51

    数码相机内的图像处理-图像采样与金字塔

    如果采样率不足,那么就会产生开篇所展示的图像上那种混叠现象,这种条纹我们称作为摩尔纹 ? 其实,除了以上这种空域上的混叠,在视频中如果摄像机的快门速度不够,那么还会产生时域上的混叠现象。...有滤波时,图像混叠现象轻微 你肯定会问,这种方法中,滤波要滤到什么程度?采样又要采样多密?...回到图像的下采样中,如果想要消除采样后导致的混叠,我们需要进行足够的滤波,以使得采样频率能够大于滤波后图像的Nyquist Rate。当然,在实际的任务中,滤波幅度通常还是要通过实验来进行。...图像金字塔 当不断的模糊图像再下采样图像,直到所规定的最小的分辨率,就可以形成一系列从大到小的图像,这就是图像金字塔。 我们先介绍高斯金字塔: ? 在此金字塔中,越往上一层,图像越模糊,尺寸越小。...我在如下的Jupyter Notebook中展示了本帖中的相关操作,你可以对着它获取更深入的理解,也能够进一步掌握用Python来进行图像处理的一些技巧。

    1.2K20

    ArcGIS自动随机生成采样点的方法

    在GIS应用中,我们时常需要在研究区域内进行地理数据的随机采样;而采样点的位置往往需要在结合实际情况的前提下,用计算机随机生成。这一操作在ArcMap软件中就可以非常方便地进行。   ...已知现有如下一景栅格图像,我们需要在这一图像对应的位置中,随机生成若干点作为采样点。   另一方面,我们还已知该栅格图像对应的空间范围的面要素矢量图层,如下图所示。...其中,由于该栅格图像存在无效值NoData,因此可以看到栅格图像是没有完全遮盖矢量图层的。   接下来,就可以开始随机点的选取。...(optional)”中选择我们的栅格图像作为范围。...,在“Long”中设定了点的个数是100,实际上是在每1个省份(每1个要素)中生成100个点,因此最终得到的整体结果是900个点,从而导致我们的随机点结果看起来就这么密集。

    1.4K30

    二十.图像量化处理和采样处理及局部马赛克特效

    前面一篇文章我讲解了基于K-Means聚类的图像分割或量化处理,但突然发现市场上讲解图像量化和采样代码的文章很缺乏,因此结合2015年自己的一篇 文章 及相关知识,分享一篇Python图像量化及处理的博文供同学们学习...1.3 K-Means聚类量化处理 上一小节的量化处理是通过遍历图像中的所有像素点,进行灰度图像的幅度值离散化处理。...但上述代码存在一个问题,当图像的长度和宽度不能被采样区域整除时,输出图像的最右边和最下边的区域没有被采样处理。这里推荐读者做个求余运算,将不能整除部门的区域也进行采样处理。...2.3 局部马赛克处理 前面讲述的代码是对整幅图像进行采样处理,那么如何对图像的局部区域进行马赛克处理呢?下面的代码就实现了该功能。...- 图像处理中的采样与量化[EB/OL] 师寇_ - Python + opencv 实现图片马赛克

    1K30

    spark 数据处理 -- 数据采样【随机抽样、分层抽样、权重抽样】

    随机抽样 分层抽样 权重抽样 SMOT 过采样 欠采样 spark 数据采样 是均匀分布的嘛?...简单抽样一般分为: RandomSampling - 随机采样 StratifiedSampling - 分层采样 WeightedSampling - 权重采样 计算逻辑 随机采样 系统随机从数据集中采集样本...,随机种子的输入值不同导致采样结果不同。...分层采样 分层抽样法也叫类型抽样法。它是从一个可以分成不同子总体(或称为层)的总体中,按规定的比例从不同层中随机抽取样品(个体)的方法。这种方法的优点是,样本的代表性比较好,抽样误差比较小。...缺点是抽样手续较简单随机抽样还要繁杂些。定量调查中的分层抽样是一种卓越的概率抽样方式,在调查中经常被使用。

    6.4K10

    PyTorch中mnist的transforms图像处理

    什么是mnist MNIST数据集是一个公开的数据集,相当于深度学习的hello world,用来检验一个模型/库/框架是否有效的一个评价指标。...MNIST数据集是由0〜9手写数字图片和数字标签所组成的,由60000个训练样本和10000个测试样本组成,每个样本都是一张28 * 28像素的灰度手写数字图片。...MNIST 数据集来自美国国家标准与技术研究所,整个训练集由250个不同人的手写数字组成,其中50%来自美国高中学生,50%来自人口普查的工作人员。...执行的部分结果: 结语 transfroms是一种常用的图像转换方法,他们可以通过Compose方法组合到一起,这样可以实现许多个transfroms对图像进行处理。...transfroms方法提供图像的精细化处理,例如在分割任务的情况下 ,你必须建立一个更复杂的转换管道,这时transfroms方法是很有用的。

    62720

    python中的skimage图像处理模块

    ‘localvar’ 高斯加性噪声,每点具有特定的局部方差。‘poisson’ 泊松分布的噪声。‘salt’ 盐噪声,随机用1替换像素。属于高灰度噪声。...‘speckle’ 使用out = image + n *图像的乘法噪声,其中n是具有指定均值和方差的均匀噪声。 seed 类型为int。将在生成噪声之前设置随机种子,以进行有效的伪随机比较。...mean: float 随机分布的均值,用于’gaussian’和‘speckle’。 默认为0。 var: float 随机分布的方差,(标准差^2)用于’gaussian’和‘speckle’。...local_vars:ndarray 图像每个像素点处的局部方差,正浮点数矩阵,和图像同型,用于‘localvar’. amount:float 椒盐噪声像素点替换的比例,在[0,1]之间。...注意RGB图像数据若为浮点数则范围为[0,1],若为整型则范围为[0,255]。2.亮度调整gamma调整原理:I=Ig对原图像的像素,进行幂运算,得到新的像素值。公式中的g就是gamma值。

    2.9K20

    图像处理在工程中的应用

    传感器 图像处理在工程和科研中都具有广泛的应用,例如:图像处理是机器视觉的基础,能够提高人机交互的效率,扩宽机器人的使用范围;在科研方面,相关学者把图像处理与分子动力学相结合,实现了多晶材料、梯度结构等裂纹扩展路径的预测...,具体见深度学习在断裂力学中的应用,以此为契机,偷偷学习一波图像处理相关的技术,近期终于完成了相关程序的调试,还是很不错的,~ 程序主要的功能如下:1、通过程序控制摄像头进行手势图像的采集;2、对卷积网络进行训练...附录:补充材料 1、图像抓取:安装OpenCV、Python PIL等库函数,实现图片的显示、保存、裁剪、合成以及滤波等功能,实验中采集的训练样本主要包含五类,每类200张,共1000张,图像的像素为440...)] cv.imshow("frame",img) cv.imwrite("E:/python/data"+'ges_1'+str(num)+".jpg",img) 其中,VideoCapture()中参数是...近些年来,随着计算机技术的发展,各类图像处理算法应运而生,使得准确识别人体手势成为了可能,大大缩减了人与机器的距离。

    2.3K30

    优化图像处理中的图像格式:OpenCV中的PNG、JPG和WEBP

    在计算机视觉和图像处理应用中,选择正确的图像格式可以影响性能和质量。...让我们深入了解每种格式在图像处理方面的独特特性,并提供实际的代码示例,展示如何使用Python中的OpenCV加载和保存这些格式。 1....PNG(便携式网络图形) 优势: PNG支持无损压缩,保留所有图像细节并支持透明度。PNG通常适用于需要精确像素值的图像处理任务(例如,分割掩码或科学图像分析)。...在计算机视觉中,JPG通常用于像素精度不太关键的数据集,如目标检测或分类任务。 劣势: JPG的有损特性会导致一些数据丢失,特别是在多次保存后,这可能会随时间降低图像质量。...它在保持高质量的情况下有效减少存储使用,非常适合需要快速访问和适度压缩的计算机视觉应用。 选择正确的图像格式和设置对于最大化计算机视觉和图像处理工作流程的效率和性能至关重要。

    25310

    图像处理中掩膜(mask)的意义

    刚开始涉及到图像处理的时候,在opencv等库中总会看到mask这么一个参数,非常的不理解,在查询一系列资料之后,写下它们,以供翻阅。...什么是掩膜(mask) 数字图像处理中的掩膜的概念是借鉴于PCB制版的过程,在半导体制造中,许多芯片工艺步骤采用光刻技术,用于这些步骤的图形“底片”称为掩膜(也称作“掩模”),其作用是:在硅片上选定的区域中对一个不透明的图形模板遮盖...图像掩膜与其类似,用选定的图像、图形或物体,对处理的图像(全部或局部)进行遮挡,来控制图像处理的区域或处理过程。 光学图像处理中,掩模可以是胶片、滤光片等。...数字图像处理中,掩模为二维矩阵数组,有时也用多值图像。...数字图像处理中,图像掩模主要用于: ①提取感兴趣区,用预先制作的感兴趣区掩模与待处理图像相乘,得到感兴趣区图像,感兴趣区内图像值保持不变,而区外图像值都为0。

    5.8K100

    数字图像处理中的噪声过滤

    翻译 | 老赵 校对 | 余杭 大家好,在我们上一篇名为“数字图像处理中的噪声”的文章中,我们承诺将再次提供有关过滤技术和过滤器的文章。...所以这里我们还有关于噪声过滤的系列“图像视觉”的另一篇文章。 在图像采集,编码,传输和处理期间,噪声总是出现在数字图像中。 在没有过滤技术的先验知识的情况下,很难从数字图像中去除噪声。...通过这种方式,将在此处对噪声进行完整的量化分析及选择其最适合的滤波器。 过滤图像数据是几乎每个图像处理系统中使用的标准过程。 过滤器用于此目的。 它们通过保留图像的细节来消除图像中的噪声。...分析最合适的噪音滤波器: 从噪声和滤波器的实现,我们分析了最适合不同图像噪声的滤波器。 ? 有了这篇关于图像处理中的噪声过滤的这篇文章。 要了解有关噪音的更多信息,请参阅此处。...有关图像处理的更多更新请与我们联系,并通过您的评论告诉我们你的疑问。

    1.7K20

    OpenCV图像处理中“投影技术”的使用

    问题引出 本文区分”问题引出“、”概念抽象“、”算法实现“三个部分由表及里具体讲解OpenCV图像处理中“投影技术”的使用,并通过”答题卡识别“”OCR字符分割”“压板识别”“轮廓展开分析”四个的例子具体讲解算法使用...在这样采集到的图像中,大量存在黑色的定位区块: ? 如果进一步定位,可以得到这样的结果: ? 如果做成连续图像 ? ?...在这波峰波谷中,存在着的“量化”结果,对应了答题卡中的定位关系 概念抽象 在前面的分析里,我们已经基本建立起“投影”的概念。...在这样的OCR识别中,首先可以通过投影的方法,实现字符的分割。 2 . 压板识别 ? ? 在这样的项目中,同样可以通过投影的方法,获得各个压板的准确定位。 3、轮廓展开分析 ?...在类似树叶这样的测量中,可以通过“极坐标转换”,将树叶的这样的曲线转换成可以分析的投影,从而得到比如“树叶有多少个分叉”“有无缺陷”这样的定量信息。 君子藏器于身,待时而动

    1.3K20
    领券