首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

不用深度学习,怎么提取图像特征?

为了简化问题,我们将问一个二元问题,图像中是否有一张发票或同一图像中有多张发票?为什么不使用文本(例如TF-IDF)?为什么只使用图像像素作为输入?...当然,对于本文来说,演示经典方法从图像中提取特征的力量。...如果我们的意图是(至少在这种情况下)决定图像中是否有一张发票,我们可以从一定距离看图像-这将有助于忽略图像中的“无聊”空白。...首先,我们需要将图像从矩阵转换为一维向量。其次,由于每个图像都有不同的形状,因此我们需要为所有图像设置一个重采样大小-在本例中。...本文是对图像的处理以及如何使用像素并从像素中提取知识的介绍,也许是对大脑的刺激。

29820
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数字图像处理及图像增强

    Contents 1 图像处理基本概念理解 2 图像增强算法 2.1 图像翻转 2.2 平移(Translations) 2.3 图像对比度和亮度调整 3 图像增强库imgaug使用 3.1 augmenters...亮度通俗理解就是图像给人肉眼的明暗程度 饱和度指的是图像颜色种类的多少 对比度指的是图像亮暗的落差值,即图像最大灰度级和最小灰度级之间的差值 图像锐化指的是补偿图像的轮廓,增强图像的边缘及灰度跳变的部分...,使图像变得更清晰的图像操作 图像增强算法 图像翻转 import numpy as np # flipping images with numpy flipped_img = np.flipr(img...对像素点RGB值完成重新赋值 将像素值变小,图像亮度减小,色彩变暗;像素值增大,图像亮度增大,色彩变亮。 ...参考资料 数字图像处理系列二】亮度、对比度、饱和度、锐化、分辨率

    55930

    C++ OpenCV人脸图像提取

    前言 《C++ OpenCV Contrib模块LBF人脸特征点检测》文章中已经介绍了人脸特征点的检测,本篇文章是在原代码的基础上实现人脸的提取。 ? 实现效果 ?...从上图上可以看到,左边蓝色方框里面是截取的人脸图像,然后在人脸图像的基础上针对特征点选定区域,最后生成右边圆框中的人脸图像。...# 实现方式 1 使用DNN检测到人脸并截取人脸部分区域 2 在截取的人脸区域中检测人脸68个特征点 3 针对68个特征点实现凸包检测形成图像掩膜 4 根据掩膜提取图像的人脸信息 关于人脸68个特征点...结语 源码下一篇会再提交上去,现在的源码在处理人脸的Delaunay三角形的 提取,正好遇到了问题。等下篇的时候一起说一下。 完

    1.6K30

    图像处理之特征提取

    颜色,易受光照影响,难以提供关键信息,故将图像进行灰度化,同时也可以加快特征提取的速度。...1.4 SIFT特征提取的缺点 实时性不高,因为要不断地要进行下采样和插值等操作; 有时特征点较少(比如模糊图像); 对边缘光滑的目标无法准确提取特征(比如边缘平滑的图像,检测出的特征点过少,对圆更是无能为力...2.2 HOG特征提取的方法 灰度化; 采用Gamma校正法对输入图像进行颜色空间的标准化(归一化),目的是调节图像的对比度,降低图像局部的阴影和光照变化所造成的影响,同时可以抑制噪音的干扰; 计算图像每个像素的梯度...如果对上述纯文字理解困难,可以参考文章: 目标检测的图像特征提取之(一)HOG特征 2.3 HOG特征提取特点 由于HOG是在图像的局部方格单元上操作,所以它对图像几何的和光学的形变都能保持很好的不变性...训练过程: 输入图像->图像预处理->提取特征->训练分类器(二分类)->得到训练好的模型; 测试过程:输入图像->图像预处理->提取特征->导入模型->二分类(是不是所要检测的物体)。

    5.6K64

    【数字图像】数字图像傅立叶变换的奇妙之旅

    缩放与旋转: 调整图像的大小和方向,以适应特定的需求或算法。 图像分析与特征提取: 边缘检测: 识别图像中物体之间的边界。 目标识别: 识别并定位图像中的特定对象。...特征提取: 提取图像中的关键特征,如纹理、形状和颜色信息。 图像处理应用领域: 医学影像处理: 用于诊断、治疗规划和手术导航。 计算机视觉: 用于实现机器视觉系统,如人脸识别、目标跟踪等。...傅立叶变换能够将图像从空间域转换到频率域,分析图像的频率成分;而二维离散余弦变换则常用于图像压缩和信号处理中,能够将图像表示为一系列余弦函数的线性组合,提取图像的频率特征。...其他特征提取方法:可以使用形态学操作、边缘检测算法等来提取频谱图中的特征,如角点、边缘、纹理等,并进一步分析其分布和方向。...傅立叶频谱对图像特征的信息提取: 观察傅立叶频谱,发现其对图像特征提供有用信息。 分析频谱中的明亮点和模式,推测出图像中的边缘、纹理等重要频率成分。

    36810

    关于图像特征提取

    网上发现一篇不错的文章,是关于图像特征提取的,给自己做的项目有点类似,发出来供大家参考。 特征提取是计算机视觉和图像处理中的一个概念。...它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。...特征是一个数字图像中“有趣”的部分,它是许多计算机图像分析算法的起点。因此一个算法是否成功往往由它使用和定义的特征决定。...因此特征提取最重要的一个特性是“可重复性”:同一场景的不同图像所提取的特征应该是相同的。 特征提取是图象处理中的一个初级运算,也就是说它是对一个图像进行的第一个运算处理。...(二)常用的特征提取与匹配方法 提取图像空间关系特征可以有两种方法:一种方法是首先对图像进行自动分割,划分出图像中所包含的对象或颜色区域,然后根据这些区域提取图像特征,并建立索引;另一种方法则简单地将图像均匀地划分为若干规则子块

    1.3K40

    python图像识别与提取_图像分类python

    该系列文章是讲解Python OpenCV图像处理知识,前期主要讲解图像入门、OpenCV基础用法,中期讲解图像处理的各种算法,包括图像锐化算子、图像增强技术、图像分割等,后期结合深度学习研究图像识别...、图像分类应用。...希望文章对您有所帮助,如果有不足之处,还请海涵~ 前面一篇文章介绍了图像增强知识,从而改善图像质量,增强图像识别效果,核心内容分为直方图均衡化、局部直方图均衡化和自动色彩均衡三部分。...这篇文章将详细讲解图像分类知识,包括常见的图像分类算法,并介绍Python环境下的贝叶斯图像分类算法、基于KNN算法的图像分类和基于神经网络算法的图像分类等案例。万字长文整理,希望对您有所帮助。...只望您能从这个系列中学到知识,一起加油喔~ 代码下载地址(如果喜欢记得star,一定喔): https://github.com/eastmountyxz/ImageProcessing-Python 文章目录 一.图像分类概述

    1.9K40

    Hog图像特征提取算法,HOG

    HOG简介 HOG全称:方向梯度直方图(Histogram of Oriented Gradient),发表于2005年的CVPR,是一种图像特征提取算法,和SVM分类器结合应用于行人检测领域。...HOG通过计算图像中每个像素的梯度的大小和方向,来获取图像的梯度特征,是一种特征描述子。...HOG计算步骤 1.对输入图像进行灰度化 2.利用gamma校正法对图像进行颜色空间归一化; 3.计算图像中每个像素的梯度大小和方向; 4.将图像划分cells,计算每个cell内的梯度直方图; 5.将每几个...size为8x8 则cell个数 = (16x16) / (8x8) = 4 3.每张图特征维度 假设直方图等级数 bins = 9 则每张图的特征维度 = 225 x 4 x 9 = 8100 HOG提取特征效果...HOG代码实现 1.基于python的scikit-image库提供了HOG特征提取的接口: from skimage import feature as ft features = ft.hog(image

    4.9K20

    【数字图像】数字图像平滑处理的奇妙之旅

    缩放与旋转: 调整图像的大小和方向,以适应特定的需求或算法。 图像分析与特征提取: 边缘检测: 识别图像中物体之间的边界。 目标识别: 识别并定位图像中的特定对象。...特征提取: 提取图像中的关键特征,如纹理、形状和颜色信息。 图像处理应用领域: 医学影像处理: 用于诊断、治疗规划和手术导航。 计算机视觉: 用于实现机器视觉系统,如人脸识别、目标跟踪等。...数据预处理:在许多图像处理和计算机视觉任务中,如图像分割、目标检测、特征提取等,平滑处理被广泛用于数据预处理阶段。...通过平滑处理,可以减少图像中的噪声和细节,提取更稳定、可靠的特征,从而增强后续算法的鲁棒性和准确性。 图像增强:有时候,图像中的细节和纹理过多会导致视觉疲劳或干扰观察对象。...灰度化(可选):如果图像是彩色图像,可以选择将其转换为灰度图像。这可以通过提取彩色图像的各个通道(如红色、绿色、蓝色)并对它们进行加权求和来实现。

    25511

    VSLAM前端:图像特征提取

    VSLAM前端:图像特征提取 一、图像特征点  视觉里程计主要是通过图像对运动进行估计。...一副中等分辨率的图像就是一个维度巨大的矩阵,我们无法对矩阵直接进行估计,其面临的将是海量的计算,因此我们有必要对图像进行特征提取。...时至今日,学者们已经提出了非常多的图像特征,常见的有:Harris,SIFT,SURF,ORB等等。虽然很多特征提取方法精度及鲁棒性很好,但其计算量巨大,明显不适合在当前使用。...我们适当降低精度和鲁棒性,选择ORB特征作为图像特征提取方法,其余方法我们不展开介绍,感兴趣的读者自行了解。  ...上图为TUM数据集双目鱼眼相机提取的FAST角点可视图。程序编码我们使用openCV作为工具,实现很简单,这里不给出具体代码了。

    93020

    图像局部特征提取

    图像特征提取是图像分析与图像识别的前提,它是将高维的图像数据进行简化表达最有效的方式,从一幅图像的的数据矩阵中,我们看不出任何信息,所以我们必须根据这些数据提取出图像中的关键信息,一些基本元件以及它们的关系...SIFT特征提取的缺点 实时性不高,因为要不断地进行下采样和插值等操作; 有时特征点较少(比如模糊图像); 对边缘光滑的目标无法准确提取特征(比如边缘平滑的图像,检测出的特征点过少,对圆更是无能为力...SIFT特征提取可以解决的问题 目标的自身状态、场景所处的环境和成像器材的成像特性等因素影响图像配准/目标识别跟踪的性能。...算法原理详解:Harris特征点检测,FAST特征检测 Harris角点特征提取 Harris角点检测是一种基于图像灰度的一阶导数矩阵检测方法。...提高阙值,则提取的角点数目变少,降低阙值,则提取的角点数目变多 另外求局部极大值的领域大小也会影响提取角点的数目和容忍度 Harris角点性质 该算法算子对亮度和对比度的变化不敏感。

    3K20

    Matlab图像处理(五)——图像边缘提取

    上一讲小白为小伙伴们带来了如何使用自编函数和自带函数对图像进行滤波,去除图像的噪声。这次小白为大家带来滤波的新用处——边缘提取。...对一个连续函数求导是一件比较容易的事情,但是图像中的数据都是数字化之后的数据,是离散的,因此对于求导就需要使用差分方式:前面的像素灰度值减去后面像素的灰度值,并将结果大于一定阈值的设为边缘,否则就不是边缘...常用的sobel边缘提取模板 Roberts算子 其实很多种算子都借鉴了sobel方法的思想,Roberts算子检测方法对具有陡峭的低噪声的图像处理效果较好,但是利用roberts算子提取边缘的结果是边缘比较粗...Matlab边缘提取 Matlab提供多种边缘检测方法,通过函数edge(image,'method')来实现图像的边缘提取,通过修改参数‘method’来实现不同滤波方法。...在程序里也利用其他算子提取了边缘,方便小伙伴的对比。 ? 总结 图像的边缘提取是对像素灰度值连续性、变化大小的检测,不同边缘检测的方法各有优缺点,需要根据实际的情况来选择提取边缘的方法。

    6.4K10

    opencv图像角点提取

    角点检测算法 harris角点检测算法的结果一定程度上取决于系数k,有人对Harris的角点检测算法进行了改进,直接利用像素点协方差矩阵的特征值提取角点... 具体原理:首先计算图像每个像素点的协方差矩阵,并求取对应的特征值,将最小的特征值最大的那个像素点作为第一个角点(具体来说,就是求出每个像素点的协方差矩阵对应的特征值...int main(int argc,char* argv[]) { src = imread("road.jpg"); cvtColor(src,src_gray,CV_BGR2GRAY);//将图像转化为灰度图...Mat copy; copy = src.clone(); //进行角点检测 goodFeaturesToTrack(src_gray, //要进行检测的图像...font-size:18px;">定制自己的角点检测算法: opencv提供了求取特征值和特征向量的函数,可以实现自己设计的角点提取算法

    54330

    【数字图像】数字图像滤波处理的奇妙之旅

    初识数字图像 数字图像处理是一门涉及获取、处理、分析和解释数字图像的科学与工程领域。这一领域的发展源于数字计算机技术的进步,使得对图像进行复杂的数学和计算处理变得可能。...缩放与旋转: 调整图像的大小和方向,以适应特定的需求或算法。 图像分析与特征提取: 边缘检测: 识别图像中物体之间的边界。 目标识别: 识别并定位图像中的特定对象。...特征提取: 提取图像中的关键特征,如纹理、形状和颜色信息。 图像处理应用领域: 医学影像处理: 用于诊断、治疗规划和手术导航。 计算机视觉: 用于实现机器视觉系统,如人脸识别、目标跟踪等。...边缘检测:边缘是图像中灰度级变化较大的区域,通常表示物体的边界或轮廓。边缘检测滤波器可以帮助我们识别和提取图像中的边缘信息。...Sobel滤波器和Prewitt滤波器常用于边缘检测,通过计算像素周围区域的梯度来提取边缘。 此外,小波变换也是一种常见的图像滤波方法,它可以在时域和频域同时提供信息,并用于图像压缩、去噪和特征提取。

    22110

    数字图像处理:

    冈萨里斯数字图像处理的那本书的一小点点东西,数字图像处理其实是学过了的,这里我只是把这本书完整看一遍,也是略略的看,查漏补缺,前两张略过了,从第三章开始。 3.灰度变换和空间滤波。...比特平面分层就是把8位(举例)图像的每一位拿出来形成二值图像,其实是相当于一些阈值化,比如所有的最低位拿出来,所有最高位拿出来,8位图像就会行程8张比特平面,每一层都代表一个图像,有什么用呢,主要是用来图像压缩...,可以用比特平面重构图像,重构的方法就是把各位换算成10进制然后加起来,这样就能重构图像,一般用最高四位就能重构出比较好的图像了。...这个方法非常简单,在印刷和出版业已经用过多年,具体操作方法为: ①模糊原图像。 ②从原始图像中减去模糊图像。(得到的称之为模板)。 ③把模板加到原图上。 这样也很好理解。...很容易理解,我们是在一个局部区域求图像的举止,所以取均值可以有效把噪声减小(平摊到均值中),一个副作用就是会模糊图像。 ②几何均值滤波器。 ?

    1.9K40

    图像特征提取(颜色,纹理,形状)

    转自 | 新机器视觉 1.颜色特征提取 计算机视觉的特征提取算法研究至关重要。...只需将数字图像中的像素值进行相应转换,表现为数值即可。因此颜色特征以其低复杂度成为了一个较好的特征。 在图像处理中,我们可以将一个具体的像素点所呈现的颜色分多种方法分析,并提取出其颜色特征分量。...2.纹理特征提取 一幅图像的纹理是在图像计算中经过量化的图像特征。图像纹理描述图像或其中小块区域的空间颜色分布和光强分布。纹理特征的提取分为基于结构的方法和基于统计数据的方法。...然后计算每个cell的直方图,即每个数字(假定是十进制数)出现的频率(也就是一个关于每一个像素点是否比邻域内点大的一个二进制序列进行统计),然后对该直方图进行归一化处理。...边缘检测是图形图像处理、计算机视觉和机器视觉中的一个基本工具,通常用于特征提取和特征检测,旨在检测一张数字图像中有明显变化的边缘或者不连续的区域,在一维空间中,类似的操作被称作步长检测(step detection

    4.3K11
    领券