首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    机器学习项目实践:30+ 必备数据库(预测模型、图像分类、文本分类)

    【新智元导读】有了好的数据,机器学习项目也就成功了一半。希望这份资源清单有助于那些寻找机器学习项目实践的人。对于初学者来说,这绝对是一个金矿。确保你在业余时间选择一些项目,并在上面投入时间和精力,将对你的技术成长大有益处。 大规模通用数据库:从这里入手 data.gov - 这是美国政府开放数据集总部。这些数据集的主题包括气候、教育、能源、金融和更多领域的数据。 data.gov.in - 这是印度政府公开数据库,你可以在这里查找关于印度各行业、气候、医疗保健等数据。同样,稍微改变后缀,就能查看不同地区国家

    06

    学界 | 超越何恺明等组归一化 Group Normalization,港中文团队提出自适配归一化取得突破

    AI 科技评论:港中文最新论文研究表明目前的深度神经网络即使在人工标注的标准数据库中训练(例如 ImageNet),性能也会出现剧烈波动。这种情况在使用少批量数据更新神经网络的参数时更为严重。研究发现这是由于 BN(Batch Normalization)导致的。BN 是 Google 在 2015 年提出的归一化方法。至今已有 5000+次引用,在学术界和工业界均被广泛使用。港中文团队提出的 SN(Switchable Normalization)解决了 BN 的不足。SN 在 ImageNet 大规模图像识别数据集和 Microsoft COCO 大规模物体检测数据集的准确率,还超过了最近由 Facebook 何恺明等人提出的组归一化 GN(Group Normalization)。原论文请参考 arXiv:1806.10779 和代码 https://github.com/switchablenorms

    01
    领券