在电脑屏幕监控软件中,图像识别算法就像是一个电脑版的侦探,用着最先进的计算机视觉技术,自动监视和分析屏幕上的图像内容。图像识别算法可以轻松地识别出屏幕上的物体、文字、图案等等,不管它们是多么复杂或是隐蔽。无论你是在监控系统里还是在视频编辑软件中使用它,都会让你感觉到“嗯,这真的是太强大了!”下面就为大家简单的介绍一下图像识别算法在电脑屏幕监控软件中优势与实用性。
安全帽图像识别算法依据AI深度学习+边缘计算,通过机器视觉ai分析检测算法可以有效识别工人是不是合规和配戴安全帽,安全帽图像识别算法提高视频监控不同场景下的主动分析与识别报警能力。安全帽图像识别算法系统搭载了全新的人工智能图像识别技术实时分析现场监控画面图像,与人力监管方式对比,规模化分析部署成本低廉,多算法并发是安全帽图像识别算法系统的优势所在。
图像识别算法在企业文档管理软件里可谓是扮演了一位全能选手,让我们的文档处理变得轻松愉快,就像吃了一块巧克力一样。现在,让我们来看看图像识别算法在企业文档管理软件里的一些酷炫玩法:
通过自建摄像头或利用辖区现有监控摄像头,利用人工智能技术,通过深度学习算法,系统能够全天候自动识别和采集城管违章行为,实现店外经营智能分析、无证游商智能分析、乱堆物堆料智能分析、暴露垃圾等场景的智能分析,从而低成本、高效率、自动、快速、准确地采集和上报问题。
工厂人员行为识别检测 基于YOLOv7技术来实现的图像识别。人员行为识别图像识别算法是计算机视觉的基础算法,例如VGG,GoogLeNet,ResNet等,这类算法主要是判断图片中目标的种类。目标检测算法和图像识别算法类似,但是目标检测算法不仅要识别出图像中的物体,还需要获得图像中物体的大小和位置,使用坐标的形式表示出来。如下图:图像识别和目标检测
利用计算机图像识别、地址库、合卷积神经网提升手写运单机器有效识别率和准确率,大幅度地减少人工输单的工作量和差错可能。
李林 编译整理 量子位 出品 | 公众号 QbitAI 2015年,黑人兄弟Jacky Alciné震惊地发现,他们被Google图像识别算法歧视了:Google Photos竟然把他的黑人朋友分类成
导语 | GAME AI SDK 是腾讯 TuringLab 研发的首个开源项目,着重解决自动化测试工具中的通用性问题,最初主要用于游戏 AI 自动化测试服务,现在可用于手机 APP、PC 端游戏、软件等专项自动化测试。通过 AI 算法进行大数据训练的网络模型具有良好的通用性,可以直接在同一类游戏(软件)中适用。文章作者:周大军,腾讯 AI 工程组专家工程师。
红外探测系统具有隐蔽性强、探测距离远以及抗干扰能力强等优点,广泛应用于舰船、航空器等目标的识别与跟踪。红外系统主要包含目标探测以及图像识别两部分:其中目标探测是红外系统的硬件基础;图像识别算法能够实现图像内容的判别和目标定位,是后续跟踪任务的前提,具体如图1所示:
近期开赛的亚马逊云科技【AI For Good - 2022 遥感光学影像目标检测挑战赛】中,动辄超过10000 x 10000的卫星遥感图像让许多选手感到头疼。同时遥感影像中目标尺寸差别大、角度各异也导致常见的CV框架难以实现快速精准的目标识别。
一般情况下,遥感目标检测中,遥感图像的图片尺寸都会很大,且图像中元素极为复杂,近期开赛的亚马逊云科技【AI For Good - 2022 遥感光学影像目标检测挑战赛】也不例外,动辄超过10000 x 10000的卫星遥感图像让许多选手感到头疼。同时遥感影像中目标尺寸差别大、小而密集、角度各异也导致常见的CV框架难以实现快速精准的目标识别。所以,如何实现遥感图像等超大尺寸图像快速识别? 目前比较成熟的卫星图像识别算法并不少,但大多依托于强大的计算资源,为了用有限的计算资源实现大尺寸图像识别,我们找到了一个
Airtest是一款网易出品的基于图像识别面向手游UI测试的工具,也支持原生Android App基于元素识别的UI自动化测试。主要包含了三部分:Airtest IDE、Airtest(用截图写脚本)和 Poco(用界面UI元素来写脚本)。来自Google的评价:Airtest 是安卓游戏开发最强大、最全面的自动测试方案之一。 图示为AirtestIDE中脚本运行范例 本文重点是针对Airtest中的图像识别进行代码走读,加深对图像识别原理的理解(公众号贴出的代码显示不全仅供参考,详细代码可以在git
近来,很高兴能够参与到腾讯云AIoT应用创新大赛,有机会认识到各种行业背景的物联网爱好者;作为一个新手,接触了面向物联网领域的TencentOS Tiny系统、腾讯云物联网开发平台以及RISC-V芯片的应用实例等。
摔倒检测跌倒识别检测基于YOLOv5技术来实现的图像识别,是计算机视觉的基础算法,例如VGG,GoogLeNet,ResNet等,这类算法主要是判断图片中目标的种类。目标检测算法和图像识别算法类似,但是目标检测算法不仅要识别出图像中的物体,还需要获得图像中物体的大小和位置,使用坐标的形式表示出来。
【新智元导读】苹果公司 AI 研究主管 Russ Salakhutdinov 近日在 NIPS 2016 的一次闭门分享会上畅谈了苹果的 AI 研究现状。从其流出的几张幻灯片可以看出苹果的确做了不少研究,尤其在压缩神经网络和图像识别算法方面独有一套。期待苹果发表第一篇机器学习论文! 苹果公司长期以来一直对其在加州库比蒂诺的实验室进行的研究保持神秘。原因很好理解。但至少在人工智能领域,苹果显示出要开始揭开其研究的神秘面纱的迹象。12月6日,在 NIPS 会议的一场闭门午餐会上,苹果公司机器学习团队的新主管 R
随着深度学习的快速发展,许多研究者们开始尝试利用深度神经网络解决多标签图像识别(Multi-label Image Recognition, MLR)任务,并已取得了不俗的进展。
人们在关注图像中的生命个体(尤其是人)的时候,关注点 往往 只是目标的脸和手脚 。这部分区域虽小,却给观者提供了对目标个体进行联想的绝大部分信息。
OCR也叫做光学字符识别,是计算机视觉研究领域的分支之一。它是利用光学技术和计算机技术把印在或写在纸上的文字读取出来,并转换成一种计算机能够接受、人又可以理解的格式。
---- 新智元报道 来源:aiweirdness、gizmodo 编译:肖琴 【新智元导读】神经网络的专长之一是图像识别。谷歌、微软、IBM、Facebook等科技巨头都有自己的照片标签算法。但即使是顶尖的图像识别算法,也会犯非常奇怪的错误,它只看到它希望看到的东西。同样,即使是非常聪明的人类,也会被算法“愚弄”。 今天,只要你生活在互联网的世界,你就可能与神经网络交互。神经网络是一种机器学习算法,从语言翻译到金融建模等各种应用,神经网络都可以发挥作用。它的专长之一是图像识别。谷歌、微软、I
大数据文摘作品 作者:小鱼、龙牧雪 上面这张图里,是猫还是狗?再好好想想,你能肯定吗? 根据胡子、鼻子较短判断,左边的似乎是猫。但是再看看右边,这明显是只狼狗吧(诡异的戴着蝴蝶结的狼狗orz)。但是这明明是一张图啊?怎么回事? 都是深度学习搞的鬼。 这是Ian Goodfellow大神2月22号最新论文里的成果。对抗性干扰,既能骗过神经网络,也能骗过人眼了。 先回忆一下我们是怎么忽悠神经网络的。 不久前,文摘菌发布过一篇关于如何利用一个小贴纸,让各大著名图像识别算法纷纷破功的文章(自带迷幻剂技能的小贴纸:忽
导语:如果说算法和数据是跑车的发动机和汽油,那么系统则是变速箱,稳定而灵活的变速箱,是图像识别服务向前推进的基础。算法、数据、系统三位一体,随着算法的快速发展和数据的日益积累,系统也在高效而稳定地升级。 一、背景介绍 前面的系列文章分别介绍了算法和数据,如果说算法和数据是跑车的发动机和汽油,那么系统则是变速箱,稳定而灵活的变速箱,是图像识别服务向前推进的基础。算法、数据、系统三位一体,组合成完整的OCR在线服务。伴随着算法的升级和业务的持续接入,系统也经历了从单机版升级到分布式版本;从为了每个算法定制系统
人工智能一直被视为学习能力极强、学习速度极快的“超级物种”,秒杀人类不解释、无商量;无论是在国际围棋比赛,还是在星际争霸游戏对决,均多次战胜人类顶级选手,所向披靡,不可一世。
---- 新智元报道 来源:B站 编辑:桃子 小咸鱼 【新智元导读】前不久,22岁何同学自制了次时代办公桌AirDesk,不仅能给设备充电,做备忘录,升降桌腿,还能够提醒喝水和下班。唯一缺点就是「贵」,总共需要6万。这不,一位UP主做了平替版,只用十分之一的成本搞定! 一周前,22岁何同学自制了「苹果放弃的产品」AirDesk 爆火出圈。 许多网友都在「求量产」,还有人却认为是在炫技,不够务实。 别急,这不一位up主近日便挑战用最短时间复刻出这张何同学同款AirDesk。 只用了24个小时,十分
步进电机和丝杆驱动需要300元,无线充电线圈500元,一键站立用到的光电对管50元,2块Arduino开发板一共550元。
大数据文摘作品 编译:Katrine.Ren、元元 当下的图像识别技术看似愈发成熟了,但自带蠢萌属性的它实际上依然可以被轻易愚弄。 研究人员最近就成功忽悠了一把以智能著称的算法,让它们一脸懵逼地犯下了一系列错误: 比如把两个滑雪的人辨识为一只狗,把一个棒球看成是一杯意式咖啡,又例如把一只乌龟误认为是一把步枪。 最新的一个欺骗机器的方法操作更为简单,却有更深远的影响,所需要的道具也仅仅是一张简陋的贴纸而已。 图注按顺序为:将贴纸放在桌上,输入分类器的图像,分类器输出结果 这款由谷歌的研究人员新近开发的自带迷幻
Game AI SDK是用于开发游戏自动化AI的开源框架。项目的特点是以游戏图像为输入,直接输出模拟触屏操作,不依赖游戏端提供任何API接口。 适用场景 主要适用于游戏场景的自动化测试,目前已应用在酷跑、竞速、FPS、格斗、MMMO、MOBA等多种类型游戏的场景自动化。特定场景下可以代替人工进行游戏场景的自动化,减少游戏场景测试的人力投入。 功能介绍 提供多种图像识别算法,识别游戏场景中的关键特征数据,如游戏场景中的技能状态、按钮位置、目标物位置等。 提供模仿学习和强化学习AI算法,可直接用于训练游
夏乙 发自 凹非寺 量子位 出品 | 公众号 QbitAI 还记得那些把熊猫认成猩猩、把乌龟认成枪、把枪认成直升机的算法吗? 它们遭遇的,是一个名为“对抗攻击(adversarial attacks)
介绍到这里会有人问,有了webdriver等ui自动化后为什么还要用图像识别呢?我认为主要有以下这几点:
世界知名博物馆Yad Vashem为后代的人们保存了600万被德国纳粹杀害的犹太人的一些相关记忆。
车辆轮轴监控识别系统根据神经网络图像识别算法与边缘计算加视觉识别技术结合在一起,以保证算法识别的准确性。车辆轮轴监控识别系统利用前端监控摄像头实时监控视频流上传至系统服务器,车辆轮轴监控识别系统实时读取抓拍图片进行识别与分析。对外输出车辆轮轴数量、车牌或警报信息。
背景 数据时代已经到来,当今企业家们已经认识到数据的重要性,并且期望通过数据分析能够驱动增长。企业业务流程面临“计划驱动”转型到”数据驱动“的巨大变革。企业需要关注的不是大数据问题,而是从小数据问题开始,关注数据价值挖掘和数据安全。未来的数据分析要求更高,数据分析的粒度会更加细腻,用户行为数据愈加重要。 本次分享主题《递归神经网络(RNN)在语义识别方面的应用》,嘉宾是参与”《数据驱动未来》 CDA数据分析师俱乐部活动·深圳站“的 深度学习专家及图像识别算法高级工程师-陈远波。 以下就跟着陈远波老师的思维一
上一周,ICML 2016在纽约画上了完美的句号。这个会议(International Conference on Machine Learning)已经逐渐发展为了由国际机器学习学会(IMLS)主办的世界最顶级的机器学习领域会议之一。来自世界各地的机器学习领域的专家们都以论文投稿的方式向大会递交了自己最新的研究成果,其中包括一篇来自百度硅谷实验室的语音识别的论文。 大会主要采用演讲和PPT展示的形式,辅以一定程度上的交流讨论会来进行。整个会议议程已经于24日全部结束,最终评出了三篇最佳论文奖和一篇最具时间
Facebook和新加坡国立大学联手提出了新一代替代品:OctConv(Octave Convolution),效果惊艳,用起来还非常方便。
选自QZ 作者:Dave Gershgorn 机器之心编译 参与:吴攀、黄小天、李亚洲 现代机器智能建立在模仿自然的基础之上——这一领域的主要目的是在计算机中复制人类通过生物方式具备的强大决策能力。
一家物流仓储智能机器人科技公司,主打产品是物流领域的极智机器人拣选系统,提供以极智机器人为核心的机器人拣选系统、搬运自动化系统和分拣系统。
面对当下的行业,阅面背靠嵌入式视觉算法,以图像识别消费级产品切入,立志做一个行业突破者。 当下,人机交互成为了人工智能技术发展的一大重点领域。在过去的2016年里,除了语音交互技术,视觉交互的发展速度
伴随着人工智能的迅速进步和执行,安全性监控的广泛运用激发了人工智能视觉识别系统和分析技术性的逐步推进科学研究。在各方面的真实运用中,将人工智能视频分析关键技术于传统式视频监控行业已变为完成当代技术性综合性视频管理方法的硬性需求。燧机科技智能视频分析系统是一种涉及到数字图像处理、计算机视觉、人工智能等方面的智能视频分析商品。它可以分析视频地区、物件遗留下或遗失、逆向行驶、群体相对密度出现异常等异常现象,并立即推送警报信息内容。
图像相比文字能够提供更加生动、容易理解及更具艺术感的信息,是人们转递与交换信息的重要来源,也是图像识别领域的一个重要问题,图像分类是根据图像的语义信息将不同类别图像区分开来,是计算机视觉中重要的基本问题,也是图像检测、图像分割、物体跟踪、行为分析等其他高层视觉任务的基础。图像分类在很多领域有广泛应用,包括安防领域的人脸识别和智能视频分析等,交通领域的交通场景识别,互联网领域基于内容的图像检索和相册自动归类,医学领域的图像识别等。一般来说,图像分类通过手工特征或特征学习方法对整个图像进行全部描述,然后使用分类器判别物体类别,因此如何提取图像的特征至关重要。但是如果靠自己实现一个图像识别算法是不容易的,我们可以使用ImageAI来完成这样一个艰巨的任务。
工厂生产作业流程合规检测系统通过yolov7网络模型算法,工厂生产作业流程合规检测对作业人员的操作行为进行全面监测,通过图像识别算法和数据分析,对人员的操作动作、工具使用、安全防护等方面进行检测和评估,能够实时监测工人的操作行为,及时发现并纠正不合规的操作,以确保工厂生产作业的合规性。
Facebook研究人员发现,当前的人工智能可被“障眼法”欺骗,即认为自己“看到了”一些不存在的物体。 对人工智能(AI)来说,眼见不一定为实。机器学习系统有可能受到欺骗,以至于听到或看到并不存在的东西。 我们已经知道,戴上一副漂亮的眼镜,有可能成功欺骗人脸识别软件,让它将你识别为其他人。但Facebook的研究表明,同样的方法也可以骗过其他算法。 这种技术被称为对抗样本。它可以被黑客用于欺骗无人驾驶汽车,使其忽略停车标志,或者阻止闭路电视摄像机从人群中发现嫌犯。 将一只猫的照片进行轻微改动
未来是一个AI的时代吗?很有可能是的,几乎每天都能看到AI相关的新闻,你会不会也有一种想要钻研AI,制造下一个AlphaGo的冲动? 可是学习AI说难不算特别难,但是说简单也绝不简单,尤其是对于初学者
AI科技评论按:看来,我们还是不能对对抗样本问题掉以轻心。 上周,康奈尔大学的一篇论文表示,当图像识别算法应用于实际生活场景下(比如自动驾驶)时,可能不需要那么担心对抗样本问题。他们做了一系列实验,从不同角度和方向拍下受到干扰的停车标志的图片,将图像进行识别,结果表明,现有的对抗性干扰只在特定场景下适用。详情可以看AI科技评论之前的报道:康奈尔大学最新研究:对抗性样本是纸老虎,一出门就不好使! 而昨天,针对康奈尔大学的论文,OpenAI表示,他们已经生成了一些图像,当从不同大小和视角来观察时,能可靠地骗过神
看懂一个东西对人类来说很容易,但是对机器来说却是很难的,这个时候图像识别技术就应运而生。今天我们就为大家揭秘图像识别技术原理,告诉你机器如何利用卷积神经网络进行图像识别,从而“看见”这个世界。
编者按:一年前,Facebook发布了照片分享应用Moments,于前不久关闭了iOS版Facebook照片同步功能,力推Moments应用,该应用运用了人脸识别技术。不过,Facebook人工智能实验室负责人Yann Lecun在为我们通俗易懂地介绍Moments的应用原理时表示,除了简单的人脸识别技术,Facebook将利用更卓越的计算机视觉技术和AI技术为用户提供更多便利,如尝试开发计算机的移情能力,当然,这些便利的应用背后需要强大的算法和繁琐的训练过程做支撑。让我们一起期待未来计算机能够更好地理解人
http://www.aitestor.com/download/duocece/duocece_setup.exe
明厨亮灶监控实施方案算法通过python+opencv网络模型图像识别算法,一旦发现现场人员没有正确佩戴厨师帽或厨师服,及时发现明火离岗、不戴口罩、厨房抽烟、老鼠出没以及陌生人进入后厨等问题生成告警信息并进行提示。明厨亮灶监控实施方案算法中OpenCV模型是一个基于Apache2.0许可(开源)发行的跨平台计算机视觉和机器学习软件库,可以运行在Linux、Windows、Android和Mac OS操作系统上。 它轻量级而且高效——明厨亮灶监控实施方案算法由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。
来源:Deephub Imba本文约3500字,建议阅读14分钟本文文章简要介绍了研究人员在图像识别算法和图像数据方面的演变,并总结了现在的一些热门话题。 三十多年来,许多研究人员在图像识别算法和图像数据方面积累了丰富的知识。如果你对图像训练感兴趣但不知道从哪里开始,这篇文章会是一个很好的开始。这篇文章简要介绍了过去的演变,并总结了现在的一些热门话题。 ImageNet 预训练模型 迁移学习(热门话题) 使用预训练模型识别未知图像 PyTorch ImageNet 的起源 在 2000 年代初期,大多数
领取专属 10元无门槛券
手把手带您无忧上云