上新是商家在电商平台提供商品的第一个环节。以京东商城为例,每年上新商品量过亿,且这一数字还在不断攀升。尤其对于服饰内衣等上新频率高、上新数量多的品类,在最为忙碌、重要又耗时的11.11上新季,如何最大化提升商家的上新效率呢?Drawbot京东商详智能助手正是基于这一需求应运而生的,它可以同时服务京东几十万商家,高质量快速生成详情页,将商品详情页的制作时间由几十分钟缩短到2分钟! 场景 为了帮助商家更快上新,将时间和资源花在其他更具有创造性和价值的工作上,京东推出Drawbot 京东商详智能助手。今年双 11
测试与图像识别 活动时间:2016年3月16日 QQ群视频交流 活动介绍:TMQ在线沙龙第十七期分享 本次分享的主题是:测试与图像识别 共有43位测试小伙伴报名参加活动,在线观看视频人数 28人~想知道活动分享了啥吗?往下看吧! 活动嘉宾 嘉宾简介 朱伟鸿,腾讯测试工程师,现在腾讯手机管家测试团队负责KingRoot软件的测试工作,主要负责高级权限部分的功能以及性能的测试。对高权限应用软件的测试测试有着深入了解。 分享主题 什么是图像识别 图像识别中所运用要的算法 如何运用图像识别进行测试 问答环
在电脑屏幕监控软件中,图像识别算法就像是一个电脑版的侦探,用着最先进的计算机视觉技术,自动监视和分析屏幕上的图像内容。图像识别算法可以轻松地识别出屏幕上的物体、文字、图案等等,不管它们是多么复杂或是隐蔽。无论你是在监控系统里还是在视频编辑软件中使用它,都会让你感觉到“嗯,这真的是太强大了!”下面就为大家简单的介绍一下图像识别算法在电脑屏幕监控软件中优势与实用性。
(接上篇) 吸引之处 那么到底什么是图像识别呢?世界上的大多数事物有自己的名称,图像识别的功能就是告诉人们这些图像上显示的是哪些事物。换句话来说,根据图像辨别出图像中出现的事物。 我们无法从椅子的内在去描述它, 能做的就是给出很多个不同椅子的样子,然后说:长得像这样的,我们就称为椅子。所以实际上,我们是通过将看到的事物与椅子的外观进行对比,如果两者很像,我们就认为这个事物叫椅子,如果不像,那它就不是椅子。 现在有很多系统采用这种吸引子Attractors。想像这样一个场景,在群山周围,一滴雨有可
说到语音识别、语音翻译、图像识别、人脸识别等等,现在已经非常非常非常普及了,看过‘最强大脑’的朋友,也应该对‘小度’这个机器人有所了解,战胜国际顶尖的‘大脑’- 水哥,(PS:内幕不知),那么今天,我们来看下关于图像识别,是如何做到的,Java又是如何识别图像的?
社交媒体已经从基于文字分享逐步转化为视觉分享媒体。因为可即时从任何设备上传图片到社交媒体,人们在社交媒体上分享的照片比以往任何时候都要多。根据德勤发布的数据, 2016年有2.5万亿张照片被分享或存储在网上。可以肯定地说,这个数字还将不断增长。
快消品行业对于终端门店的执行审核大多采用传统人工稽查的方式进行,由于全国门店数量庞大,导致品牌的稽核成本同样巨大。惠合科技致力于用技术驱动快消品行业的营销数字化变革,对于全国零售门店的陈列审核,采用强劲的EasyDL定制化训练和识别技术来解决目前传统方式的高成本及低效率问题,惠合科技指导零售门店自主上传陈列影像,使用EasyDL辅助完成陈列的审核工作,用AI技术驱动效率的提升,为品牌商提供低成本、更及时的门店陈列审核及线下营销整体方案。
还记得当年火爆朋友圈的军装照小应用吗?它背后的人脸融合技术,以及未来人脸融合的新趋势,你一定不能错过! 如何能够搭建一套有效稳定的图像识别系统呢? 如何通过使用腾讯云API搭建自己的图像识别应用? 腾
移动互联网、智能手机以及社交网络的发展带来了海量图片信息,根据BI五月份的文章,Instagram每天图片上传量约为6000万张;今年2月份WhatsApp每天的图片发送量为5亿张;国内的微信朋友圈也是以图片分享为驱动。不受地域和语言限制的图片逐渐取代了繁琐而微妙的文字,成为了传词达意的主要媒介。图片成为互联网信息交流主要媒介的原因主要在于两点:
回到我们的正题,对于世界杯的球星们,人们知道的一般都是C罗,梅西,德罗巴等巨星,而对一些其它球星却很少了解。对于这些球星,你认识的有多少呢?下面就跟我一起认识一下这些球星,看看你是不是真球迷。
图像识别市场估计将从2016年的159.5亿美元增长到2021年的389.2亿美元,在2016年至2021年之间的复合年增长率为19.5%。机器学习和高带宽数据服务的使用进步推动了这项技术的发展。 。电子商务,汽车,医疗保健和游戏等不同领域的公司正在迅速采用图像识别。根据MarketsandMarkets的报告,图像识别市场分为硬件,软件和服务。以智能手机和扫描仪为主的硬件部分可以在图像识别市场的增长中发挥巨大作用。越来越需要具有创新技术(例如监控摄像头和面部识别)的安全应用程序和产品。
选自code.Facebook 作者:Dhruv Mahajana、Ross Girshick、Vignesh Ramanathan、Manohar Paluri、Laurens van der Maaten 机器之心编译 参与:路、张倩 人工标注数据需要耗费大量人力成本和时间,对模型训练数据集的规模扩大带来限制。Facebook 在图像识别方面的最新研究利用带有 hashtag 的大规模公共图像数据集解决了该问题,其最佳模型的性能超越了之前最优的模型。 图像识别是 AI 研究的重要分支之一,也是 F
在7月7日ArchSummit深圳架构师峰会上,魅族联合InfoQ共同策划举办了第9期以“大数据和 AI 应用实践”为主题的魅族技术开放日活动。活动邀请了5位小组长:分别是腾讯云大数据及AI产品中心技术专家 张杉,eBay数据和商业智能研发总监 沈则潜,销售易技术VP 赵宇辰,魅族高级算法工程师 李梦婷,魅族数据平台研发组长、架构师 张欢引。 现场讨论非常热烈,大家相见恨晚,各抒己见,畅所欲言,对于大数据平台架构、推荐系统、图像识别、机器学习等话题,几乎有说不完的想法,讨论不完的问题,借助这样的机会,确实可
一个偶然的机会,36氪和“优图团队”进行了接触,他们是腾讯内部专注于图像处理、模式识别、机器学习、数据挖掘等领域的核心技术团队,由毕业自清华、北大、中科院、上海交大等院校的博士、硕士组成。 腾讯优图团队隶属于腾讯社交网络事业群,基于整个腾讯的社交网络平台,为QQ空间、腾讯地图、腾讯游戏、等50多款产品提供图像技术支持。每天QQ空间有2亿上传图片的活跃用户,团队单日最多处理照片达6亿张,累计已经分析处理了超过300亿张照片 36氪:作为纯粹的技术团队,怎么平衡技术和产品之间的矛盾? 我们首先会对一些关键技术,
编者按:一年前,Facebook发布了照片分享应用Moments,于前不久关闭了iOS版Facebook照片同步功能,力推Moments应用,该应用运用了人脸识别技术。不过,Facebook人工智能实验室负责人Yann Lecun在为我们通俗易懂地介绍Moments的应用原理时表示,除了简单的人脸识别技术,Facebook将利用更卓越的计算机视觉技术和AI技术为用户提供更多便利,如尝试开发计算机的移情能力,当然,这些便利的应用背后需要强大的算法和繁琐的训练过程做支撑。让我们一起期待未来计算机能够更好地理解人
近日,36氪和“优图团队”进行了接触,他们是腾讯内部专注于图像处理、模式识别、机器学习、数据挖掘等领域的核心技术团队,由毕业自清华、北大、中科院、上海交大等院校的博士、硕士组成。 腾讯优图团队隶属于腾讯社交网络事业群,基于整个腾讯的社交网络平台,为 QQ 空间、腾讯地图、腾讯游戏、等 50 多款产品提供图像技术支持。每天 QQ 空间有 2 亿上传图片的活跃用户,团队单日最多处理照片达 6 亿张,累计已经分析处理了超过 300 亿张照片 36氪:作为纯粹的技术团队,怎么平衡技术和产品之间的矛盾? 我们首先会对
翻译 | Serene 编辑 | 阿司匹林 出品 | 人工智能头条(公众号ID:AI_Thinker) 2017 年 7 月,最后一届 ImageNet 挑战赛落幕。 为何对计算机视觉领域有着重要贡献的 ImageNet 挑战赛,会在 8 年后宣告终结? 毕竟计算机系统在图像识别等任务上的准确率已经超过人类水平,每年一次突破性进展的时代也已经过去。 近日,FAIR(Facebook AI Research) 的 Ross Girshick 、何恺明等大神联手,在 ImageNet-1k 图像分类数据集上取得
在机器视觉的概念中,图像识别是指软件具有分辨图片中的人物、位置、物体、动作以及笔迹的能力。计算机可以应用机器视觉技巧,结合人工智能以及摄像机来进行图像识别。
【新智元导读】研究人员开发出以人脑为模型的深度学习算法,来破解人类大脑。相关研究发表在最新一期Cerebral Cortex,研究人员构建了一个大脑如何解码信息的模型,根据参与者的大脑活动,该模型能够以50%的精确度预测她所看到的东西。 人工智能让我们离科幻小说里的“读脑机器”更近了一步。现在,研究人员开发出以人脑为模型的深度学习算法,来破解人类大脑。首先,他们建立了一个大脑如何解码信息的模型。三名女性花费了数小时观看几百条短视频,功能性核磁共振机器测量了视觉皮层和其他地方的活动信号。一个用于图像处理的人工
目前在零售行业的实际运营过程中,会产生巨大的人力成本,例如导购、保洁、结算等,而其中,尤其需要花费大量的人力成本和时间成本在识别商品并对其进行价格结算的过程中,并且在此过程中,顾客也因此而需要排队等待。这样一来零售行业人力成本较大、工作效率极低,二来也使得顾客的购物体验下降。
脑源(Brainsourcing)技术:利用一组参与者的大脑响应,每个人来执行一个识别任务,从而确定刺激的类别。研究人员调查了从参与者的脑电图(EEG)收集的数据中推断可靠类别标签的可能性。在该项实验中(N =30)测量了EEG对面部视觉特征(性别,头发颜色,年龄,微笑)的反应。结果显示,12名参与者的F1分数为0.94,而单人参与者的F1分数为0.67。随机概率为0.50。该项研究结果证明了脑源(Brainsourcing)技术在标记任务中的方法和实用可行性,并为在众包环境中使用脑-机接口的更一般应用开辟了道路。
最近,图像识别领域发布了白皮书,简单翻译一下做个总结。 ---- 目录 [1] Introduction 1.1 Exponential Growth of Image and Video 1.2 Statistics [2] Image Recognition [3] Recent Innovations 3.1 Approaches 3.2 Deep Neural Networks [4] Applications 4.1. Inform
【新智元导读】移动AI,尤其是智能手机上的计算机视觉应用,已经成为人们生活中重要的一部分。本文将会从最新趋势、未来机会、用户将如何使用手机上的AI等方面进行分析。本人作者是PicsArt的联合创始人兼
AI技术的火爆无疑是近几年创新应用上的一次革命。如今AI技术在众多科技公司的推动下已经渗透到各行各业,气象行业也不例外。将AI融入到天气预报、大气探测、天气预警以及天气服务中的尝试一直未间断。AI技术的应用背后是大数据的支撑和机器学习的广泛探索。利用AI技术进行雷达图像的识别,进行短临预报;利用AI技术与数值模式结合提升预报的准确率;利用AI技术进行探测数据的质量控制和融合处理;利用AI技术进行天气预警的精准推送;利用AI技术进行大雾的识别、天气现象的识别等等,可以说AI已经在气象领域中全面开花。在复杂的大气物理、化学等机理研究难以取得突破时,融入AI技术是提升气象技术的有利补充。关于天气预报、探测等AI技术的应用上经验比较少,跟大家分享一下我参与实施的在公众气象服务中的一些尝试应用。
通过自建摄像头或利用辖区现有监控摄像头,利用人工智能技术,通过深度学习算法,系统能够全天候自动识别和采集城管违章行为,实现店外经营智能分析、无证游商智能分析、乱堆物堆料智能分析、暴露垃圾等场景的智能分析,从而低成本、高效率、自动、快速、准确地采集和上报问题。
毫无疑问近年来最具中国特色的科技发明非红包莫属,这一基于中国传统民俗,结合社交网络、移动支付等互联网技术的应用正在成为新的春节习俗。与两年前只有微信一家不同,今年互联网红包迎来众多巨头参战,BAT三大
在数字化时代,视觉内容的创造与分享变得前所未有的便捷。然而,这也带来了版权保护的挑战。从社交媒体上的个人照片到专业媒体机构的新闻图片,版权侵权行为屡见不鲜。为了应对这一挑战,版权检测技术应运而生,成为保护视觉内容版权的“卫士”。本文将探讨视觉内容版权检测技术的应用、项目介绍及其发展。
在这个AI技术日新月异的时代,作为程序员,我们面临着前所未有的机遇与挑战。本文深入探讨了AI的发展趋势、程序员应掌握的AI技能、实际项目案例以及未来职业规划。文章涵盖了深度学习、机器学习、数据科学等关键词,适合于各层次读者,无论是AI初学者还是资深开发者。本文将帮助你更好地理解AI时代的趋势,并作出明智的职业决策。
一听到安全研究人员说发现某种新型恶意软件时,大家第一反应肯定是这些恶意软件是不是又做了什么坏事,入侵设备窃取信息或者感染设备干扰使用等。然而,近日安全研究人员发现的WAPDropper恶意软件却是不一样的存在。 昨日,安全研究人员警告说,目前发现一个针对手机用户的新的恶意软件家族,这些恶意软件让目标用户悄悄地订阅合法的高级拨号服务。 莫不是通信运营商的“卧底”吧? 非也。 WAPDropper恶意软件是一种多功能病毒释放器,可以传播第二阶段的恶意软件,并使用机器学习解决方案来绕过图像的CAPTCHA挑战。
银行卡扫描识别 Ctrip Tech 背景介绍: 图像识别是人工智能的一个重要领域 。为了编制模拟人类图像识别活动的计算机程序,人们提出了不同的图像识别模型。图像识别经历了三个阶段的发展:文字识别,数字图像处理与识别,物体识别。文字识别的研究是从1950年开始的,一般是识别字母,数字和符号,从印刷文字识别到手写文字识别,应用非常广泛。 随着智能手机兴起,手机支付的行为越来越普及。但是用户在手机上输入银行卡卡号时,速度很慢,需要仔细的校对,用户体验很差。美国的PAYPAL 、苹果公司,中国的阿里公司和腾讯都在
结果,AI一顿操作猛如虎,进行了判断:左边的是桃面牡丹鹦鹉,右边的是国家保护动物费氏牡丹鹦鹉,二者区别仅在于喙的颜色以及白色眼圈。
多模态机器学习,英文全称 MultiModal Machine Learning (MMML),旨在通过机器学习的方法实现处理和理解多源模态信息的能力。目前比较热门的研究方向是图像、视频、音频、语义之间的多模态学习。
AI 科技评论按:近日 Facebook 科学家团队发布基于主题标签的深度学习方法,使用已有的拥有主题标签的图片作为训练数据,从而大幅提升了训练数据集的大小。数据集的增大必然会引起图片错误率的提升,他们同时发布了处理图片噪音的方法。他们团队的这项工作对于现今的图片识别领域有着广泛而深远的影响。AI科技评论对全文翻译如下。
如若苹果收购Beats传言为真,软硬云结合的智能音乐必将兴起。此前Google Glass已掀起了一股智能多媒体之风。智能耳机、音箱和音乐盒是声音的智能化,Oculus、蚁视则是显示智能化,这两个领域均发生大规模的并购事件倍受关注。 下一个智能多媒体领域是什么呢?答案是摄像头。小度i耳目正在通过母亲节、幼儿园合作等公益活动走向民间,Foream等摄像头创业项目越来越多,Intel则在大力发展3D摄像头等技术。 智能摄像头成为计算机 雷科技曾经发布亮风台的《摄像头智能化三部曲:从拍照到智能交互》
在农业场景,主要包括有作物管理、害虫和杂草处理、疾病管理、土壤管理、产量预测和管理等。作物管理,主要提供作物选择,施肥建议,使得作物免受恶劣天气影响等;害虫和杂草处理,即识别害虫和杂草,提供处理害虫和杂草的相关建议,推测害虫行进路线和繁殖规模和速度,推测杂草的生长状态和发展等;疾病管理,即预测、识别分类作物病害;土壤和作物管理,包括评估作物表面土壤湿度,预测天气,结合天气预测结果进行灌溉等;产量预测和管理,根据气候,季节等因素提供最佳播种时间建议,并预测最佳收成时间和最终产量等。其主要运用的AI技术最开始是基于规则的专家系统,发展到后来的模糊推理系统和人工神经网络的结合。主要涉及模式识别,图像识别等。
引言:人工智能正在改变世界,那么人工智能在2018年将会如何影响数字营销呢?本文分析了AI可以极大地推动数字营销的一些潜在领域。 翻译 | Nic 审校 | Sarah 编辑 | Rachel 从幽默
近日,京东AI研究院常务副院长何晓冬博士和副院长梅涛博士正式入选IEEE Fellow(IEEE会士/院士),该荣誉将于2019年1月1日正式生效。这是京东历史上首次有在职科学家晋级IEEE Fellow,也是两位京东人同时获得这一殊荣,代表着京东在研发领域出色的人才布局和人工智能研发领域强大的实力。
AI科技评论报道 编辑:琰琰 话说,你能看出上面这三只鹦鹉有什么不一样吗?脸盲如我,要使出玩“我们来找茬”的十级能力。 AWSL,鹦鹉鹦鹉,傻傻分不清楚。 结果,AI一顿操作猛如虎,进行了判断:左边的是桃面牡丹鹦鹉,右边的是国家保护动物费氏牡丹鹦鹉,二者区别仅在于喙的颜色以及白色眼圈。 小鸟并不孤单,猫猫狗狗和花花草草也在被“找茬”。 最近,浙江大学和阿里安全在AI细粒度图像识别技术上取得了新进展,利用RAMS-Trans相关技术先后在公开数据集CUB(鸟类识别)、St
4月23日上午9点30分至11:30 ,来自上海大学、上海交通大学、清华大学、河北师范大学、中国海洋大学等高校50位师生,通过视频会议+ 远程访问的方式参加NVIDIA举办的全栈式深度学习开发体验课程。他们在NVIDIA企业开发者社区经理何琨和李奕澎的指导下,一对一远程访问NVIDIA Jetson Xavier NX计算节点,进行实际AI开发操作。本次远程深度学习实践活动也是NX GPU计算体验平台的首次开放。该平台共有50个节点。每台计算节点可以提供高达21TOPS 深度学习计算能力,可利用 NVIDI
这款名为Polycam的电动相机机器人支持使用图像识别和人工智能技术来追踪运动员的动作,完全不需要人工摄像师的操作。 近日,据外媒报道,MRMC推出一款名为Polycam的电动相机机器人,其支持使用图像识别和人工智能技术来追踪运动员的动作,将动作时刻保持在画面的中央,完全不需要人工摄像师的操作,也不需要远程控制等其它方式。 据悉,Polycam与其它自动化操作系统的区别在于如何模仿人类操作者的拍摄方式。Polycam并没有使用大范围的广角镜头来进行拍摄,而是通过平移和调整缩放焦距等动态方式来追踪运动员的动作
人工智能应用的范围很广,包括:计算机科学,金融贸易,医药,诊断,重工业,运输,通讯,法律,科学发现,游戏,音乐等诸多方面。今天介绍19个AI热门应用领域
Rekognition将联合亚马逊Amazon Comprehend Medical 医学语言处理服务,以更有效的方式抽取医学图像中的个人健康信息(PHI)。
图像识别技术是信息时代的一门重要的技术,其产生目的是为了让计算机代替人类去处理大量的物理信息。随着计算机技术的发展,人类对图像识别技术的认识越来越深刻。图像识别技术的过程分为信息的获取、预处理、特征抽取和选择、分类器设计和分类决策。简单分析了图像识别技术的引入、其技术原理以及模式识别等,之后介绍了神经网络的图像识别技术和非线性降维的图像识别技术及图像识别技术的应用。从中可以总结出图像处理技术的应用广泛,人类的生活将无法离开图像识别技术,研究图像识别技术具有重大意义。 1、图像识别技术的引入 图像识别是人
选自arXiv 机器之心编译 参与:李泽南、路雪 在图像识别任务中,模型的训练一直非常依赖于标注数据,同时训练结果难以泛化。香港科技大学与卡耐基梅隆大学的研究者们最近发表的研究提出时间动态图 TD-Graph LSTM 试图解决这些问题,他们的新方法也刷新了视频目标检测的业内最佳水平。该论文已入选即将在 10 月底举行的 ICCV2017 大会。 随着数据驱动方式在图像识别上的不断发展,人们对于扩大目标检测系统规模的兴趣越来越大。然而,与分类任务不同,用不同的类与边界框完整标注对象实例的方法几乎是不可扩展
成年人的11.11,不只有“衣食住行相关的买买买”,还有“囤课”、“抢课”。 数据显示,2020年,腾讯课堂11.11单日成交额同比增长200%,高峰时期180万人涌入竞相选课。今年以来,全国青年在线学习职业技能热情不减。腾讯课堂延续去年11.11活动热度,联合更多机构加码投入百万补贴,连续15天为用户发放红包,并推出海量的1元秒杀课程等福利活动。11.11活动将从10月29日启动,并持续到11月12日。 值得注意的是,今年11.11活动期间,腾讯课堂还将特别推出全国热学课程榜单、好评课程榜单、薪选好课榜
伴随着图像处理技术的飞速发展,推动了图像识别技术的产生和发展,并逐渐成为人工智能领域中重要的组成部分,并广泛地运用于面部识别、指纹识别、医疗诊断等等领域中,发挥重要作用。
现在社会中人工成本是非常大的,因为这种状况所以现在很多工作使用到的机器也越来越多,尽可能的减少人为操作,这样就可以减少总体的成本提升本身的竞争力,提到机器操作不得不说的就是人工智能技术,越来越多的企业开始接触以及使用人工智能技术,从而减少人工成本的支出,让机器代替人力操作,比如现在比较火热的智能识别图像识别技术,那么智能识别图像识别采用了什么原理?智能识别图像识别有哪些应用?
对于不少出生在“Z世代”的大学生而言,“田间地头”是很遥远的画面——出现在课本、影视剧以及长辈们口中的描述,似乎是他们了解农业为数不多的途径。
领取专属 10元无门槛券
手把手带您无忧上云