首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    学界 | 超越何恺明等组归一化 Group Normalization,港中文团队提出自适配归一化取得突破

    AI 科技评论:港中文最新论文研究表明目前的深度神经网络即使在人工标注的标准数据库中训练(例如 ImageNet),性能也会出现剧烈波动。这种情况在使用少批量数据更新神经网络的参数时更为严重。研究发现这是由于 BN(Batch Normalization)导致的。BN 是 Google 在 2015 年提出的归一化方法。至今已有 5000+次引用,在学术界和工业界均被广泛使用。港中文团队提出的 SN(Switchable Normalization)解决了 BN 的不足。SN 在 ImageNet 大规模图像识别数据集和 Microsoft COCO 大规模物体检测数据集的准确率,还超过了最近由 Facebook 何恺明等人提出的组归一化 GN(Group Normalization)。原论文请参考 arXiv:1806.10779 和代码 https://github.com/switchablenorms

    01

    如何快速成为图像识别大神?英伟达专家带你低门槛、高效实现AI模型训练与部署 | 英伟达CV公开课

    位来 发自 凹非寺 量子位 编辑 | 公众号 QbitAI 图像识别技术是人工智能研究的一个重要分支,也是人们日常生活、工作中应用最广泛的AI技术之一。如车辆识别、人脸识别、体态识别等技术,广泛应用于智慧城市、交通、零售、文娱等领域。 图像识别也是机器人、无人驾驶等技术的重要基础,未来将具有更加广泛的应用领域。 但对于大部分AI开发者来说,图像识别从算法研究、模型训练到规模化的提供服务,所需卷入的资源和处理的流程非常之多。并且如何保证数据质量、提高推理速度、提升识别精度等都面临很多挑战。 那么,开发者如何才

    02

    【ARM攒机指南——AI篇】5大千万级设备市场技术拆解

    作者:重走此间路 编辑:闻菲 【新智元导读】单做算法无法挣钱,越来越多的公司都开始将核心算法芯片化争取更多市场和更大利益,一时间涌现出AI芯片无数。与CPU,GPU这样的通用芯片不同,终端AI芯片往往针对具体应用,能耗规格也千差万别。本文立足技术分析趋势,总结深度学习最有可能落地的5大主流终端市场——个人终端(手机,平板),监控,家庭,机器人和无人机,汽车,以及这些终端市场AI芯片的现状及未来。小标题以及着重部分是新智元转载时编辑增加,点击“阅读原文”了解更多。 近一年各种深度学习平台和硬件层出不穷,各种x

    06

    深度|整容式的美颜2.0技术如何实现?聊一聊背后的图像识别技术

    雷锋网按:本文根据涂图CTO在七牛云架构师沙龙上的演讲整理,本篇主要谈谈人脸识别技术的原理与具体实践的一些问题,作者授权发布雷锋网。 在上篇文章的最后,我们提到了美颜2.0最关键的技术——人脸识别。这是项复杂但又非常热门的技术,我们将在这篇文章中聊一聊图像识别技术。 一、如何让机器看懂世界? 这里我们来简单聊聊机器学习与深度学习。 近段时间,机器学习、深度学习的概念非常火,尤其是今年 AlphaGo 击败了韩国棋手这件事,引起了世界的轰动。机器学习和深度学习这两个概念,比较容易混淆,以至于很多媒体在写报道时

    09
    领券