引言:深度学习是近年机器学习领域的重大突破,有着广泛的应用前景。随着Google公开Google Brain计划,业界对深度学习的热情高涨。百度成立深度学习研究院,腾讯也启动了深度学习的研究。腾讯在深度学习领域持续投入,获得了实际落地的产出。本文是腾讯深度学习系列文章的第一篇。我们准备了四篇文章,阐述深度学习的原理和在腾讯的实践。 2014年6月22日,腾讯深度学习平台(Tencent Deep Learning Platform)于国际机器学习领域顶级会议ICML2014上首次公开亮相,揭秘了腾讯深度学习
近日,百度深度学习实验室主任林元庆在百度年终媒体分享会上做了《看懂AI-百度技术开放日》的演讲,从客观层面阐述了人工智能技术研发的四大支柱,为我们呈现了让人工智能更深层,更极致的方法论,下面是演讲精华
工人是否佩戴安全帽图像识别系统能从繁杂的场景下对对未戴安全帽多个目标同时开展识别分析,识别、记录和预警提醒。工人是否佩戴安全帽图像识别系统若发现违规操作,直接向有关人员推送报警消息记录,协助有关管理者进行安全生产工作,大大提升了安全监督的时效性,减少了人力成本。
引言:深度学习是近年机器学习领域的重大突破,有着广泛的应用前景。随着Google公开Google Brain计划,业界对深度学习的热情高涨。腾讯在深度学习领域持续投入,获得了实际落地的产出。我们准备了四篇文章,阐述深度学习的原理和在腾讯的实践,介绍腾讯深度学习平台Mariana,本文为第一篇。 深度学习(Deep Learning)是近年来机器学习领域的热点,在语音识别、图像识别等领域均取得了突破性进展。腾讯提供广泛的互联网服务,在2014年第一季度,即拥有3.96亿月活跃用户的微信,8.48亿月活跃用户的
日前,瑞芯微Rockchip正式发布基于RK3399平台的Android 8.1 Neural Networks API (NNAPI)优化SDK,提供模型更通用、性能更强大的AI运算支持。
导语:如果说算法和数据是跑车的发动机和汽油,那么系统则是变速箱,稳定而灵活的变速箱,是图像识别服务向前推进的基础。算法、数据、系统三位一体,随着算法的快速发展和数据的日益积累,系统也在高效而稳定地升级。 一、背景介绍 前面的系列文章分别介绍了算法和数据,如果说算法和数据是跑车的发动机和汽油,那么系统则是变速箱,稳定而灵活的变速箱,是图像识别服务向前推进的基础。算法、数据、系统三位一体,组合成完整的OCR在线服务。伴随着算法的升级和业务的持续接入,系统也经历了从单机版升级到分布式版本;从为了每个算法定制系统
【新智元导读】苹果公司 AI 研究主管 Russ Salakhutdinov 近日在 NIPS 2016 的一次闭门分享会上畅谈了苹果的 AI 研究现状。从其流出的几张幻灯片可以看出苹果的确做了不少研究,尤其在压缩神经网络和图像识别算法方面独有一套。期待苹果发表第一篇机器学习论文! 苹果公司长期以来一直对其在加州库比蒂诺的实验室进行的研究保持神秘。原因很好理解。但至少在人工智能领域,苹果显示出要开始揭开其研究的神秘面纱的迹象。12月6日,在 NIPS 会议的一场闭门午餐会上,苹果公司机器学习团队的新主管 R
如果自己研发做图像识别的成本比较高,尤其是在没有一个很好的硬件设施(GPU)的情况下,还是通过API比较合适。 计算机科学学位的技术往往要落后于现实。许多学校都要求花好几个月的时间制作课程大纲,如果里
今天下午,在北京举行的GTC CHINA 2016(GPU技术大会)中,英伟达深度学习研究院对CNTK中图像识别功能进行了简单介绍。 首先,我们来了解下CNTK。 CNTK(Computational
然而,这些并非新概念。第一个人工神经网络(ANN)是在 40 年代引入的。那么为什么最近的热点话题都是关于神经网络和深度学习的呢?我们将在 GPU 和机器学习的一系列博客文章中探讨这些概念。
翻译 | Serene 编辑 | 阿司匹林 出品 | 人工智能头条(公众号ID:AI_Thinker) 2017 年 7 月,最后一届 ImageNet 挑战赛落幕。 为何对计算机视觉领域有着重要贡献的 ImageNet 挑战赛,会在 8 年后宣告终结? 毕竟计算机系统在图像识别等任务上的准确率已经超过人类水平,每年一次突破性进展的时代也已经过去。 近日,FAIR(Facebook AI Research) 的 Ross Girshick 、何恺明等大神联手,在 ImageNet-1k 图像分类数据集上取得
【AI研习社】关注AI前沿、开发技巧及技术教程等方面的内容。欢迎技术开发类文章、视频教程等内容投稿,邮件发送至:zhangxian@leiphone.com 随着谷歌2015年发布开源人工系统TensorFlow,让本就如火如荼的深度学习再添一把火,截至现在,TensorFlow已经历了多个版本演进,功能不断完善,AI开发者也能灵活自如的运用TensorFlow解决一些实际问题,下面雷锋网会对一些比较实用的TensorFlow应用做相关整理,让大家对TensorFlow有理性和感性的双层认知。 Tensor
将深度卷积神经网络(Convolutional Neural Networks, 简称CNNs)用于图像识别在研究领域吸引着越来越多目光。由于卷积神经网络结构非常适合模型并行的训练,因此以模型并行+数据并行的方式来加速Deep CNNs训练,可预期取得较大收获。Deep CNNs的单机多GPU模型并行和数据并行框架是腾讯深度学习平台的一部分,腾讯深度学习平台技术团队实现了模型并行和数据并行技术加速Deep CNNs训练,证实模型拆分对减少单GPU上显存占用有效,并且在加速比指标上得到显著收益,同时可
本文共9876字,阅读约需14分钟,有兴趣的朋友请耐心阅读,谢谢! 近期许良在公司内部做了一个关于人工智能/深度学习相关的主题分享讲座,为了准备这个演讲,花了100个小时左右,接下来就把精心准备的内容分享给大家。 有一个好消息是,考虑文章比较长和文字本身表达的局限性,同时为了解答大家的疑问,近期会完全免费开一个视频直播,具体内容如下。 1. 深度学习入门到晋级 2. 深度学习模型解析和代码实现展示 3. 答疑环节 具体直播时间和链接获取方法最后和大家说。 ---- 内容正式开始。 一提到人工智能和深度学
AI 科技评论:港中文最新论文研究表明目前的深度神经网络即使在人工标注的标准数据库中训练(例如 ImageNet),性能也会出现剧烈波动。这种情况在使用少批量数据更新神经网络的参数时更为严重。研究发现这是由于 BN(Batch Normalization)导致的。BN 是 Google 在 2015 年提出的归一化方法。至今已有 5000+次引用,在学术界和工业界均被广泛使用。港中文团队提出的 SN(Switchable Normalization)解决了 BN 的不足。SN 在 ImageNet 大规模图像识别数据集和 Microsoft COCO 大规模物体检测数据集的准确率,还超过了最近由 Facebook 何恺明等人提出的组归一化 GN(Group Normalization)。原论文请参考 arXiv:1806.10779 和代码 https://github.com/switchablenorms
【导读】1月17日,Arduino社区的编辑SAGAR SHARMA发布一篇基于TensorFlow API的图像识别实例教程。作者通过TensorFlow API快捷地实现一个命令行图像分类例子,详
当Google使用16000台机器建造了一个可以正确识别出YouTube视频中是否有猫的仿真“大脑”时,这就标志着人工智能(AI)技术迎来了一个转折点。这种新兴的AI算法需要应用大量的计算机数据,常被称为“深度学习”。Google仿真大脑号称比现有的图像识别系统的精准度高出了两倍。 纽约时报在2012年写到,这项研究代表着新一代的计算机科学可以被利用来降低计算机成本以及提高了大型数据中心计算机集群的可用性。并可以给不同领域带去巨大进展,例如感知、语音识别、以及语言翻译等方面。 事实上,在过去两年,微软发
本文是腾讯深度学习系列文章的第三篇,聚焦于腾讯深度学习平台Mariana中深度卷积神经网络Deep CNNs的多GPU模型并行和数据并行框架。 将深度卷积神经网络(Convolutional Neural Networks, 简称CNNs)用于图像识别在研究领域吸引着越来越多目光。由于卷积神经网络结构非常适合模型并行的训练,因此以模型并行+数据并行的方式来加速Deep CNNs训练,可预期取得较大收获。Deep CNNs的单机多GPU模型并行和数据并行框架是Mariana的一部分,Mariana技术团队
这是新的系列教程,在本教程中,我们将介绍使用 FPGA 实现深度学习的技术,深度学习是近年来人工智能领域的热门话题。
深度学习正在推动从消费者的手机应用到图像识别等各个领域的突破。然而,运行基于深度学习的人工智能模型带来了许多挑战。最困难的障碍之一是训练模型所需的时间。 需要处理大量的数据和构建基于深度学习的人工智能
懒人阅读:人工智能芯片是人工智能的“大脑”,可以分为终端和云端两个应用方向。目前主流CPU、CPU+GPU、CPU+FPGA、CPU+ASIC架构。人工智能芯片具有两个突出特点:一是算法与芯片的高度契合,面向终端和云端不同需求提升计算能力;二是专门面向细分应用场景的智能芯片,如语音识别芯片、图像识别芯片、视频监控芯片等。
【新智元导读】市场研究&咨询公司Grand View Research的报告从行业、解决方案、硬件、应用程序、终端使用、区域等方面对深度学习进行了评估及趋势分析。 近日,市场研究&咨询公司Grand View Research发布了一份深度学习市场分析报告。该报告从行业、解决方案、硬件、应用程序、终端使用、区域等方面对深度学习进行了评估及趋势分析。 该报告主要回答了以下问题: 从2013年到2015年,该市场有多大? 到2024年,该市场会有怎样的发展? 哪个领域会推动或引领市场发展? 竞争环境和市场
图形图像是进阶资深程序猿的重要一步,不论平台,不论语言,图形图像都是核心岗位的核心技能,so,你需要get它。
人工神经网络作为一个新技术正不断融入各个学科,其独有的优势在数字图像处理中也得到了不错的运用。针对卷积神经网络做图像识别,则是一个相当火的方向,如腾讯云识别,只要上传任意一张图像就能识别出图中有人还是有花等,那这到底是怎么实现的呢?
计算机视觉已经是日常生活的一部分。借助这种技术,Facebook可以识别你上传到社交网络的照片上的人物;Google Photo能够自动在收藏行列中找出特定的图片,以及识别出各种各样的东西……这样的
位来 发自 凹非寺 量子位 编辑 | 公众号 QbitAI 图像识别技术是人工智能研究的一个重要分支,也是人们日常生活、工作中应用最广泛的AI技术之一。如车辆识别、人脸识别、体态识别等技术,广泛应用于智慧城市、交通、零售、文娱等领域。 图像识别也是机器人、无人驾驶等技术的重要基础,未来将具有更加广泛的应用领域。 但对于大部分AI开发者来说,图像识别从算法研究、模型训练到规模化的提供服务,所需卷入的资源和处理的流程非常之多。并且如何保证数据质量、提高推理速度、提升识别精度等都面临很多挑战。 那么,开发者如何才
原文:Getting Started with Deep Learning: A REVIEW OF AVAILABLE TOOLS 作者: MATTHEW RUBASHKIN 翻译:冯斌 【摘要】本文评估了当前热门的深度学习工具,对于想进行深度学习开发的团队来说,可以参考一二。以下为译文: 在硅谷数据科学公司里,我们的研发团队调研了从图像识别到语音识别等不同的深度学习技术。建立了一套收集数据、创建模型,评估模型的技术路线。然而,当开发者研究什么技术可应用时,却找不到一个简明的可供参考的总结材料来开始一个新
【导读】1月22日,深度学习工程师George Seif发布一篇文章,主要介绍了一些经典的用于图像识别的深度学习模型,包括AlexNet、VGGNet、GoogLeNet、ResNet、DenseNet的网络结构及创新之处,并展示了其在ImageNet的图像分类效果。这些经典的模型其实在很多博文中早已被介绍过,作者的创新之处在于透过这些经典的模型,讨论未来图像识别的新方向,并提出图像识别无监督学习的趋势,并引出生成对抗网络,以及讨论了加速网络训练的新挑战。文章梳理了用于图像识别的深度学习方法的脉络,并对将来
训练深层模型是长期以来的难题,近年来以层次化、逐层初始化为代表的一系列方法的提出给训练深层模型带来了希望,并在多个应用领域获得了成功。深层模型的并行化框架和训练加速方法是深度学习走向实用的重要基石,已有多个针对不同深度模型的开源实现,Google、Facebook、百度、腾讯等公司也实现了各自的并行化框架。深度学习是目前最接近人脑的智能学习方法,深度学习引爆的这场革命,将人工智能带上了一个新的台阶,将对一大批产品和服务产生深远影响。 1.深度学习的革命 人工智能(Artificial Intelligen
【摘要】本文评估了当前热门的深度学习工具,对于想进行深度学习开发的团队来说,可以参考一二。以下为译文: 在硅谷数据科学公司里,我们的研发团队调研了从图像识别到语音识别等不同的深度学习技术。建立了一套收
图像识别市场估计将从2016年的159.5亿美元增长到2021年的389.2亿美元,在2016年至2021年之间的复合年增长率为19.5%。机器学习和高带宽数据服务的使用进步推动了这项技术的发展。 。电子商务,汽车,医疗保健和游戏等不同领域的公司正在迅速采用图像识别。根据MarketsandMarkets的报告,图像识别市场分为硬件,软件和服务。以智能手机和扫描仪为主的硬件部分可以在图像识别市场的增长中发挥巨大作用。越来越需要具有创新技术(例如监控摄像头和面部识别)的安全应用程序和产品。
选自code.Facebook 作者:Dhruv Mahajana、Ross Girshick、Vignesh Ramanathan、Manohar Paluri、Laurens van der Maaten 机器之心编译 参与:路、张倩 人工标注数据需要耗费大量人力成本和时间,对模型训练数据集的规模扩大带来限制。Facebook 在图像识别方面的最新研究利用带有 hashtag 的大规模公共图像数据集解决了该问题,其最佳模型的性能超越了之前最优的模型。 图像识别是 AI 研究的重要分支之一,也是 F
唐旭 编译整理 量子位出品 | 公众号 QbitAI 深度神经网络(DNN)已经被证明在图像识别、视频识别、自然语言处理、游戏人工智能等诸多不同领域都具有非常大的潜力,当前,DNN也已经被应用到多种产品之中。 然而,DNN计算所需的成本非常高,并且在通常情况下,DNN的执行需要基于硬件加速的大量执行环境设置进程。因此,要在像笔记本电脑、智能手机这样的终端用户设备上执行DNN并不十分现实。 过去解决这些问题的方法是云计算。而现在,东京大学机器智能实验室(MIL)开发的WebDNN又提出了一条新的途径。 Web
作者:重走此间路 编辑:闻菲 【新智元导读】单做算法无法挣钱,越来越多的公司都开始将核心算法芯片化争取更多市场和更大利益,一时间涌现出AI芯片无数。与CPU,GPU这样的通用芯片不同,终端AI芯片往往针对具体应用,能耗规格也千差万别。本文立足技术分析趋势,总结深度学习最有可能落地的5大主流终端市场——个人终端(手机,平板),监控,家庭,机器人和无人机,汽车,以及这些终端市场AI芯片的现状及未来。小标题以及着重部分是新智元转载时编辑增加,点击“阅读原文”了解更多。 近一年各种深度学习平台和硬件层出不穷,各种x
卷积神经网络(Constitutional Neural Networks, CNN)是在多层神经网络的基础上发展起来的针对图像分类和识别而特别设计的一种深度学习方法。先回顾一下多层神经网络:
TensorFlow是一款由Google构建的用于训练神经网络的开源机器学习软件。TensorFlow的神经网络以有状态数据流图的形式表示。图中的每个节点表示神经网络在多维阵列上执行的操作。这些多维数组通常称为“张量”,因此称为TensorFlow。TensorFlow架构允许在台式机,服务器或移动设备中的多个CPU或GPU上进行部署。还有与Nvidia的并行计算平台CUDA集成的扩展。这使得在GPU上部署的用户可以直接访问并行计算任务所需的虚拟指令集和GPU的其他元素。
图形处理单元 (GPU) 已成为 AI 开发的关键。它们可以大大加快训练和部署 AI 模型所涉及的计算过程。
雷锋网按:本文根据涂图CTO在七牛云架构师沙龙上的演讲整理,本篇主要谈谈人脸识别技术的原理与具体实践的一些问题,作者授权发布雷锋网。 在上篇文章的最后,我们提到了美颜2.0最关键的技术——人脸识别。这是项复杂但又非常热门的技术,我们将在这篇文章中聊一聊图像识别技术。 一、如何让机器看懂世界? 这里我们来简单聊聊机器学习与深度学习。 近段时间,机器学习、深度学习的概念非常火,尤其是今年 AlphaGo 击败了韩国棋手这件事,引起了世界的轰动。机器学习和深度学习这两个概念,比较容易混淆,以至于很多媒体在写报道时
【新智元导读】移动AI,尤其是智能手机上的计算机视觉应用,已经成为人们生活中重要的一部分。本文将会从最新趋势、未来机会、用户将如何使用手机上的AI等方面进行分析。本人作者是PicsArt的联合创始人兼
作者 | 阿司匹林 出品 | 人工智能头条(公众号ID:AI_Thinker) 2015 年 11 月,Facebook 发表论文“Better Computer Go Player with Neural Network and Long-term Prediction”,提出了一种将蒙特卡洛树搜索和深度强化学习结合的方法。随后,基于这种方法的围棋 AI——DarkForest,在 2016 年 1 月举行的 KGS 锦标赛上获得了第三名。 不过,Google 随后就放了一个大招。 2016 年 3 月
选自The Next Platform 机器之心编译 参与:微胖、黄小天、吴攀 对于工作,有一个合适的工具当然好;但是把一个工具应用于多个工作且效用更佳,这更好。这就是为什么通用的基于 X86 的计算接管数据中心的原因之一。通过受限范围或者只是把原来有的应用程序单独放在替换平台上,规模经济获得了出乎意料的效率。 十多年前,把计算任务从 CPU 卸载到 GPU 加速器的想法从学术界脱颖而出,并且相对更快的高性能计算社区和 GPU 制造商英伟达扩展了现有的 Fortran 和通常用于 CPU 并行超级计算机的
本文主要介绍了一些经典的用于图像识别的深度学习模型,包括AlexNet、VGGNet、GoogLeNet、ResNet、DenseNet的网络结构及创新之处,并展示了其在ImageNet的图像分类效果。这些经典的模型其实在很多博文中早已被介绍过,作者的创新之处在于透过这些经典的模型,讨论未来图像识别的新方向,并提出图像识别无监督学习的趋势,并引出生成对抗网络,以及讨论了加速网络训练的新挑战。文章梳理了用于图像识别的深度学习方法的脉络,并对将来的挑战和方法做了分析,非常值得一读!专知内容组编辑整理。
Tengine 是 OPEN AI LAB 一款轻量级神经网络推理引擎,它针对 Arm 嵌入式平台进行了专门优化,对 Android、Linux 系统都提供了很好的支持。
如果对当今人工智能的主流技术——深度学习没有了解,可能真的会有人觉得,当前的科学家们在创造无所不能、无所不知的电影AI形象。
GAIR 今年夏天,雷锋网将在深圳举办一场盛况空前的“全球人工智能与机器人创新大会”(简称GAIR)。大会现场,雷锋网将发布“人工智能&机器人Top25创新企业榜”榜单。目前,我们正在四处拜访人工智能、机器人领域的相关公司,从而筛选最终入选榜单的公司名单。如果你的公司也想加入我们的榜单之中,请联系:2020@leiphone.com 在让计算机理解世界上,或许理解了什么并不重要,重要的是理解的能力。于是图普科技想到让它理解“小黄图”。 图普是一家图像识别云服务公司,接入它的API,上传图片,服务器就能以一
本篇干货整理自清华大学自动化系教授张长水于2018年4月27日在清华大学数据科学研究院第二届“大数据在清华”高峰论坛主论坛所做的题为《机器学习和图像识别》的演讲。
颜萌 李林 编译整理 量子位 出品 | 公众号 QbitAI 所到之处,英伟达CEO黄仁勋例行强调:我们是一家AI公司。 谁又能说不是? 市值两年上涨7倍,芯片供不应求,屡战英特尔,坚持怼谷歌,是当前AI大红大紫中的实力玩家,也是AI大潮中最闪亮耀眼的明星缩影。 创立24年来,从游戏芯片供应商,到AI芯片垄断者,英伟达俨然历史钦定。 不过,回溯英伟达的风云际会,历史进程纵然功不可没,个人奋斗更是不容忽视——没有濒临破产时的豪赌,没有在CUDA上百亿美元的押注,又怎会有如今风光无
来源:Deephub Imba本文约3500字,建议阅读14分钟本文文章简要介绍了研究人员在图像识别算法和图像数据方面的演变,并总结了现在的一些热门话题。 三十多年来,许多研究人员在图像识别算法和图像数据方面积累了丰富的知识。如果你对图像训练感兴趣但不知道从哪里开始,这篇文章会是一个很好的开始。这篇文章简要介绍了过去的演变,并总结了现在的一些热门话题。 ImageNet 预训练模型 迁移学习(热门话题) 使用预训练模型识别未知图像 PyTorch ImageNet 的起源 在 2000 年代初期,大多数
领取专属 10元无门槛券
手把手带您无忧上云