首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于分解和重组的分子图的生成方法

    今天为大家介绍的是来自Masatsugu Yamada 和 Mahito Sugiyama的一篇关于分子生成的论文。在药物发现和材料设计中,设计具有所需化学性质的分子结构是一项重要任务。然而,由于候选分子空间的组合爆炸,找到具有优化所需性质的分子仍然是一项具有挑战性的任务。在这里,作者提出了一种全新的基于分解和重组的方法,该方法不包括任何在隐藏空间中的优化,并且生成过程具有高度的可解释性。该方法是一个两步过程:在第一步的分解阶段,对分子数据库应用频繁子图挖掘,以收集较小规模的子图作为分子的构建模块。在第二步的重组阶段,通过强化学习引导搜索理想的构建模块,并将它们组合起来生成新的分子。实验证明,作者方法不仅可以在惩罚性log P和药物相似度这两个标准指标下找到更好的分子,还可以生成显示有效中间分子的药物分子。

    01
    领券