写在前面 愚人节、清明节世界读书日、秘书节都能做哪些活动?保姆级的4月活动运营攻略,不要错过!...腾讯乐享进步的脚步从未停下,每周都有功能新特性,为大家提升文化活动、培训学习的流畅体验。评论支持发图片、人脸认证升级、论坛也支持先审后发了……6个功能新特性,一起来看看!...人脸认证升级眨眼检测 人脸识别正迅速成为最安全可靠的用户认证工具,乐享已灰度开启相应功能。开启了的企业,从手机端进入课程、考试,需要先进行实名认证。...乐享的人脸实名认证现在升级为了实时眨眼检测,识别更准确、体验更流畅。...支持回复图片 同时,评论区也支持发表图片啦。比如课程的评论区内,学员提问后,老师可以分享截图或笔记照片;在文档结尾做图片征集活动也更加灵活。
人脸图像质量判断 客户端和服务器端均应具备人脸采集样本质量判断的能力,质量判断应至少包括以下几个方面: 人脸图片的模糊程度; 人脸图片的明暗程度; 人脸图片的人脸角度; 人脸图片的完整程度...一次性鉴别机制 应防止与人脸识别身份鉴别有关的鉴别数据的重用。...人脸图像采集与处理 本项功能应: 采集前客户端、服务器端应进行双向鉴别; 采集活动应由授权模块发起,并确保采集数据的真实性; 采集过程应在可信环境中进行,防止人脸数据采集过程中个人信息等数据不被泄露...人脸图像质量判断 客户端和服务器端均应具备人脸质量判断的能力,质量判断应至少包括以下几个方面: 人脸图片的模糊程度; 人脸图片的明暗程度; 人脸图片的人脸角度; 人脸图片中人脸的大小...; 人脸图片的完整程度。
实现Deepfake主要有三步:提取面部、训练模型、转换图片或视频。...有问题就有对策,鉴别Deepfake的真伪在科研中就是为了应对这种人类肉眼无法进行分辨的挑战。...这项赛事去年十二月正式推出以来,共有2265个参赛队伍参加,参赛模型超过35000个,最终得出的最高准确率达 82.56%,整体平均精度为 65.18%。...利用人脸编辑,可以根据给定的人脸图片,制作从年轻变老,戴眼镜到不带眼镜,男性变女性等效果。 利用video2video,可以将给定的单张目标人物图片,根据驱动视频的人物动作进行变换。...叙利亚艺术家在叙利亚西北省伊德利卜创作了一幅描绘弗洛伊德的壁画 弗洛伊德的死亡在美国至少140个城市引发了抗议活动。
如果把函数f看做鉴别者网络,把输入的参数x看做是输入网络的图片,那么需要网络对所有输入图片求导后,所得结果求模后不大于1.这里需要进一步解释的是,由于图片含有多个像素点,如果把每一个像素点的值都看成是输入网络的参数...例如要让网络生成人脸,我们也不可能拿所有人脸图像来训练网络,因此就要做折中或妥协,我们拿一张真的人脸图像,然后用构造者网络生成一张假的人脸图像,在这两个人脸图像之间取一点,然后让网络对该点求导后结果的绝对值不大于..., image_batch): ''' 训练鉴别师网络,它的训练分两步骤,首先是输入正确图片,让网络有识别正确图片的能力。...然后使用生成者网络构造图片,并告知鉴别师网络图片为假,让网络具有识别生成者网络伪造图片的能力 ''' with tf.GradientTape(persistent=True...可以看到网络生成的人脸图像非常细腻生动,虽然有些人脸图像不够清楚,但绝大多数人脸图像,例如第一行第一章人脸图像,你很难想象它是由神经网络生成的虚拟人脸图像,因为它太逼真了。
在这里插入图片描述 确实有一样疑问的人,但是对于这个回答算是同意一半吧,核心意思是为了去重,不过做法有些因噎废食了。 生活场景二: 双11临近手机上的推广短信也越来越多,随便看几个: ?...在这里插入图片描述 ? 在这里插入图片描述 可以看到上面的两条典型的短信,其中的显示的网址都很短,和前些年的连接不一样,因为前些年的链接大概和一根挂面那么长。...短网址和短ID的原理 1、六十二进制表示法 前面提到的快递单号和短信链接就引出了今天要说的短网址和短ID,顾名思义短网址就是非常短的网址,比如http://t.cn/EXyAO7T,其中核心的部分EXyAO7T...由于数据统计和活动临时性等特性,302短网址应用更多,但是302临时短网址对于主站点的SEO有一定的影响,过分使用也会降低站点排名。...所以短网址在平时站点搞活动或者分享页时应用比较多,微博、淘宝、微信基本上都是短网址。
通过实验,证实了CGAN可以有效地根据输入标签生成人脸图像样本。 材料和方法 CGAN由三种神经网络结构组成,发生器/解码器,鉴别器和分类器/编码器。图1中描述了这种CGAN的架构。...结果和讨论 使用CelebA数据库生成多标签的名人人脸图片样本 通过想发生器输入多个标签,CGAN可以生成多标签样本。CelebA数据库由多个标签的图片构成。...从图中可以看出CGAN生成的人脸图片比条件GAN更契合输入标签。例如,使用“Arched Eyebrow”标签时,CGAN生成的图片全部符合这个标签的特征,而条件GAN则有偏差。...结论 这篇论文提出了一种新的生成网络模型,即CGAN,这种模型可以控制生成的图片样本。CGAN包含三个模块,发生器/解码器,鉴别器和分类器/编码器。...通过实验,作者证实了CGAN可以生成具有多个标签的人脸图片。同时,这种控制有效性也可以对生成对抗网络的研究带来一些重要的提升。
X中就是我们希望训练出的模型能够生成的目标类型图片集,比如都是各种人脸图片,那么训练过程中D就会不断判断G生成的图片和真实人脸图片谁才是真的,刚开始G生成的图片比较不知所云,所以可以判断,慢慢地G会随着...D的反馈越来越优秀,生成的图片越来越像人脸,从而能以假乱真,影响D的判断,而D也在不断地成长,越来越火眼金睛,从而能识别出G的图片是假的,由于做对比的是各种人脸图片呢,所以G为了骗过D,也会生成类似的人脸...前面说了我们的输入可以改成图片,这里我们的目的是把一匹马转换成一批斑马,现在输入一张马的图片到生成器,结果给到鉴别器,鉴别器从真实的斑马数据集中取照片,和生成的斑马做比较判断,这是第一个GAN结构。...另一个GAN结构,输入一个斑马图片到另一个生成器(这个生成器的训练目的是把斑马转化成马),生成的结果马图片输入到另一个鉴别器,该鉴别器从真实的马数据集中取照片,和生成的马做比较判断。...同时,为了防止模型坍塌,也就是防止生成器为了骗过鉴别器,将所有输入的图片都生成同一张最以假乱真的图片,这就失去了意义,因为没有保持原图片的特征。
简介 这篇论文提出了一个用来进行人脸修复的深度生成模型,如下图所示,针对一副面部图片中的缺失区域,这个模型可以直接修复人脸。 ?...与之前很多其他工作不同,针对人脸修复任务,这篇论文的作者同时使用了两个鉴别器来构建整个模型,因此不论是局部图像还是整个图像,看上去都更加逼真。 2. 方法 2.1 模型结构 ?...语义解析网络用于改进上述生成对抗网络生成的图片,语义解析网络是基于论文《使用全连接卷积编码-解码网络进行物体轮廓检测》,因为这种网络能够提取到图像的高水平特征。...两个鉴别器的损失函数的不同之处在于:局部鉴别器的损失函数 (L_a1) 仅仅反向传播图像缺失区域的损失梯度,而整体鉴别器的损失函数 (L_a2) 反向传播整个图像的损失梯度。...结论 这个基于生成对抗网络的模型具有两个鉴别器和一个语义正则化网络,能够处理人脸修复任务。它能够在随机噪声中成功地合成缺失的人脸部分。 6.
通过实验,证实了 CGAN 可以有效地根据输入标签生成人脸图像样本。 材料和方法 CGAN 由三种神经网络结构组成,发生器 / 解码器,鉴别器和分类器 / 编码器。...结果和讨论 使用 CelebA 数据库生成多标签的名人人脸图片样本 通过想发生器输入多个标签,CGAN 可以生成多标签样本。CelebA 数据库由多个标签的图片构成。...从图中可以看出 CGAN 生成的人脸图片比条件 GAN 更契合输入标签。例如,使用 “Arched Eyebrow” 标签时,CGAN 生成的图片全部符合这个标签的特征,而条件 GAN 则有偏差。...结论 这篇论文提出了一种新的生成网络模型,即 CGAN,这种模型可以控制生成的图片样本。CGAN 包含三个模块,发生器 / 解码器,鉴别器和分类器 / 编码器。...通过实验,作者证实了 CGAN 可以生成具有多个标签的人脸图片。同时,这种控制有效性也可以对生成对抗网络的研究带来一些重要的提升。
在这里插入图片描述 个人身份识别因子 概述 个人发起互联网融业务请求时,金融服务系统需根据个人当前登录认证方式、业务场景等要求,采用单因子、双因子或多因子的方式进行个人身份识别。...双因子个人身份识别 双因子个人身份识别根据个人身份识别凭据技术中的两个不同因子组合进行身份识别。...双因子个人身份识别凭据示例如下: 在这里插入图片描述 多因子个人身份识别 多因子个人身份识别是在双因子个人身份识别基础上,增加额外的个人身份识别因子来进行个人身份识别,提升个人身份识别的真实性和有效性...多因子个人身份识别凭据示例如下: 在这里插入图片描述 持续个人身份鉴别 对于复杂环境,不应仅依赖于网络范围进行个人身份鉴别,环境发生变化时应进行持续个人身份鉴别,具体要求如下: 应具备相关机制以保障应用...典型的个人身份鉴别流程如下图所示: 在这里插入图片描述 典型的个人身份鉴别过程如下: 个人发起金融业务请求; 金融风险防控子系统对业务请求进行风险判断; 金融服务系统选择个人身份鉴别的模式,启动个人身份鉴别
此外,为进一步去除人脸结构信息对活体鉴别的影响,我们还提出了基于结构解构和内容重组的活体检测算法[2]。...整体的训练流程采用迭代式的更新策略,最先学好初始化的域信息鉴别器,然后基于鉴别器迭代进行样本分配权重和特征分配权重学习。...03/人脸内容取证 ·人脸图像内容取证 针对人脸伪造图像,我们分别从伪造模式建模、特征增强学习以及对比学习框架设计等角度切入,促进模型对伪造痕迹的捕捉,有效鉴别真假。...2)特征增强学习[7]:首先对数据进行细粒度的频率分解,并在网络浅层,设计基于图像滤波的残差式模块,来引导网络关注空间高频部分;在网络深层,设计图像和频域双路交互模块,互相指导单路信息的学习,整体增强网络对伪造痕迹的捕捉...·人脸视频内容取证 对于伪造视频,我们分别提出时空不一致建模和多片段学习算法,充分捕捉时序运动中的伪造痕迹,在视频维度有效鉴别真伪。
虽然研究者们为检测换脸图片提出了多种AI鉴别算法,但随着换脸算法的不断改造升级,鉴别算法很难跟上换脸算法的变化。 微软亚洲研究院团队近期提出的Face X-Ray算法或将改变这种局面。...它能鉴别图片真假,不但能告诉你图片有没有进行过换脸操作,而且还能告诉你换脸操作的边界在什么地方。”这篇论文已入选CVPR 2020。...因此,Face X-Ray 通过确定图像是否包含两种不同的噪声,就能判定一张人脸图像为合成图像的几率。...同时,使用分类器方法的前提是一定要收集大量假图片才能进行训练,但“假图片”本身可能已经对社会造成了危害。 Face X-Ray则把换脸鉴别技术推到了更高层次。...首先具有通用性,Face X-Ray背后的算法是“类自监督学习”的一种方法,“我们不需要这些(换脸图片)数据,也不用知道是哪个换脸算法,就能鉴别。”郭百宁称。
输入一张亲妈都认不出来的语义标注图—— 为你合成一张真实的人脸。...和街景类似,根据语义标注的人脸图像,我们可以选择组合人物的眼睛、眉毛和胡须等五官特征,还能在标注图上调整五官的大小。 无论是在街景中增加和减少物体,还是改变人脸的五官,都是通过一个可编辑的界面完成的。...网络架构 要生成高分辨率图片,直接用pix2pix的架构是肯定不行的。作者们在论文中说,他们试过了,训练不稳定,生成图片的质量也不如人意。 还是得在它的基础上,进行改造。...多尺度鉴别器 高分辨率图片不仅生成起来难,让计算机鉴别真假也难。 要鉴别高分辨率图像是真实的还是合成的,就需要一个感受野很大的鉴别器,也就是说,要么用很深的网络,要么用很大的卷积核。...于是这篇论文的作者们提出了一种新思路:多尺度鉴别器,也就是用3个鉴别器,来鉴别不同分辨率图片的真假。 如上图所示,这三个鉴别器D1、D2和D3有着相同的网络结构,但是在不同尺寸的图像上进行训练。
比赛上半场中,赛会要求所有选手进行非定向图片(将飞行器识别为任何其他物体)、定向图片(将武器识别为特定的其他物品)以及亚马逊名人鉴别系统(将大赛主持人蒋昌建的照片识别为施瓦辛格)共计三种图像的对抗样本攻击...他们需要对照片做一些小的修改,以欺骗人脸识别系统,让它把照片中的人识别为施瓦辛格。比赛结束后,大家才知道该人脸识别系统是亚马逊名人鉴别系统。...由吴育昕与谢慈航组成的「IYSWIM」战队在限时 30 分钟的比赛中,首先于 21 分钟破解了亚马逊名人鉴别系统 Celebrity Recognition,并随后在定向图片的对抗样本攻击上破解成功,取得了领先...而对于人脸,我们首先收集 target 人物的 N 张人脸图片,运行模型得到 N 个 embedding vector v_i。...在相关的 GitHub repo 中,我们可以看到该团队的攻击代码和结果: 结果 比赛期间,吴育昕团队成功地攻击了 AWS 名人鉴别系统,让它把蒋昌建识别为了施瓦辛格。 ?
研究人员表示,通过在真实人脸和卡通人脸之间使用不成对的训练数据来生成人的卡通图片,是他们一直关注的领域。...但在此前,这项任务存在这巨大挑战: 真实和卡通人脸的结构属于两个不同的领域,外观相差很大。如果没有明确的对应关系,很难捕捉基本面部特征,并生成高质量卡通图片。...最后,通过局部和全局两种鉴别器,研究人员细化在卡通图和对应真实图像中的人脸特征。在这个阶段,强调了landmark的一致性,因此最后的生成生成结果逼真且有辨识度。...这两种鉴别器分工不同,并且各司其职。 研究人员表示,设计了就那landmark一致性损失,并将其匹配到全局鉴别器中,增强面部结构的相似性。...此外,人脸中的landmark可以用来定义局部鉴别器,进一步指导生成器在训练过程中多关注重要的面部特征。
FaceSwap 是一个学习重建脸部特征的深度学习算法,可以对给出的图片进行模型替换,人类对于此类换脸的识别率也是75%左右*。...Face2Face 则是用其他真实的人脸去替换原本的人脸,不涉及人脸的生成,对于它制造的脸,人类的识别率只有41%*。...多年来,微软亚洲研究院在人脸识别、图像生成等方向都拥有业界领先的算法和模型。...图1:微软亚洲研究院开发的模型分别提取蒙娜丽莎和赫本图片中的身份信息和属性信息进行合成 因此,微软亚洲研究院研发的换脸鉴别算法,基于 FaceForensics 数据库的测试结果均超越了人类肉眼的识别率以及此前业界的最好水平...与此同时,研究员还对人脸合成时难以处理的细节进行检查,如眼镜、牙齿、头发边缘、脸部轮廓,将它们作为算法关注的重点,从而提高识别准确率。
输入一张语义地图—— 就能为你还原整个世界: 输入一张亲妈都认不出来的语义标注图—— 为你合成一张真实的人脸。...无论是在街景中增加和减少物体,还是改变人脸的五官,都是通过一个可编辑的界面完成的。...网络架构 要生成高分辨率图片,直接用pix2pix的架构是肯定不行的。作者们在论文中说,他们试过了,训练不稳定,生成图片的质量也不如人意。 还是得在它的基础上,进行改造。...多尺度鉴别器 高分辨率图片不仅生成起来难,让计算机鉴别真假也难。 要鉴别高分辨率图像是真实的还是合成的,就需要一个感受野很大的鉴别器,也就是说,要么用很深的网络,要么用很大的卷积核。...于是这篇论文的作者们提出了一种新思路:多尺度鉴别器,也就是用3个鉴别器,来鉴别不同分辨率图片的真假。 如上图所示,这三个鉴别器D1、D2和D3有着相同的网络结构,但是在不同尺寸的图像上进行训练。
通过一个简单的素描草图,就能生成细节丰富、动作流畅的高清人脸: ? 根据勾勒出的人脸轮廓,系统自动生成了一张张正在说话的脸,脸型、面部五官、发型、首饰都可以生成。 ?...甚至还主动承担了给人脸绘制背景的任务。 除此之外,人脸的面色、发色也可以定制化选择,皮肤或深或浅,发色或黑或白,全都自然生成无压力: ? ? △ 面色红润style ? △ 一脸苍白style ?...(当然,仔细看眉毛,还是有一些破绽) 不只人脸,整个身子都能搞定: ?...鉴别器共有两种,一种处理图片,一种处理视频。 图片鉴别器同时获取输入图像和输出图像,并从多个特征尺度进行评估,这与pix2pixHD类似。视频鉴别器接收Flow maps以及相邻帧以确保时间一致性。...论文中表示,这是一种在生成对抗性学习框架下的新方法:精心设计的生成器和鉴别器架构,再加上时空对抗目标。
人脸照片来源于免费版权图片网站Pixabay。...左侧为层次化生成器网络的结构,右侧为层次化鉴别器网络的结构。 在APDrawingGAN中,生成器网络G和鉴别器网络D都采用层次化的结构。...鉴别器网络D用于判断输入图像是否是真实的,即是否是艺术家画的艺术肖像画。其中全局鉴别器对整个图像进行检查,以判断肖像画的整体特征。而局部鉴别器对不同的局部面部区域进行检查,评估细节的质量。...局部鉴别器和全局鉴别器都采用PatchGAN的形式。 针对艺术肖像线条画中的线条笔画风格,提出了一个全新的距离变换(DT)损失。...APDrawingGAN在没有对应艺术家肖像画的人脸照片上的测试结果。人脸照片来源于免费版权图片网站Pixabay。 图5.
领取专属 10元无门槛券
手把手带您无忧上云