首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    对偶学习的生成对抗网络 (DualGAN)

    近年来,生成对抗网络(Generative Adversarial Networks, GAN)成为了人工智能领域最为炙手可热的研究方向。GAN 的想法最早由 Ian Goodfellow 在 2014 年提出。GAN 用对抗的方法,同时训练了一个「生成模型(G)」与一个「判别模型(D)」,在学习的过程中,生成模型的优化目标是尽可能地去生成伪造的数据,从而获得真实数据的统计分布规律;而判别模型则用于判别给出的一个输入数据到底来源于真实数据还是生成模型。最终,当一个判别模型无法准确分辨生成模型所生成的数据是否为伪造时,此时我们认为判别模型与生成模型都已经提高到了较高的水平,生成模型所生成的数据足以模仿真实世界中的数据。因此,当我们使用 GAN 来「识别」图片时,我们不但识别了图片的内容,还可以生成各种不同内容的图片。费曼曾经说过:“What I cannot create, I do not understand.”生成模型为人工智能的研究提供了一种“create” 的可能性,因而引起了广泛的关注。

    02

    OCR 【技术白皮书】第一章:OCR智能文字识别新发展——深度学习的文本信息抽取

    信息抽取 (Information Extraction) 是把原始数据中包含的信息进行结构化处理,变成表格一样的组织形式。输入信息抽取系统的是原始数据,输出的是固定格式的信息点,即从原始数据当中抽取有用的信息。信息抽取的主要任务是将各种各样的信息点从原始数据中抽取出来。然后以统一的形式集成在一起,方便后序的检索和比较。由于能从自然语言中抽取出信息框架和用户感兴趣的事实信息,无论是在信息检索、问答系统还是在情感分析、文本挖掘中,信息抽取都有广泛应用。随着深度学习在自然语言处理领域的很多方向取得了巨大成功,循环神经网络(RNN)和卷积神经网络(CNN)也被用于信息抽取研究领域,基于深度学习的信息抽取技术也应运而生。

    04
    领券