号外!号外!现在人们终于可以在浏览器中进行人脸识别了!本文将为大家介绍「face-api.js」,这是一个建立在「tensorflow.js」内核上的 javascript 模块,它实现了三种卷积神经网络(CNN)架构,用于完成人脸检测、识别和特征点检测任务。
作者 | Vincent Mühle 编译 | 姗姗 出品 | 人工智能头条(公众号ID:AI_Thinker) 【导读】随着深度学习方法的应用,浏览器调用人脸识别技术已经得到了更广泛的应用与提升。在实际过程中也具有其特有的优势,通过集成与人脸检测与识别相关的API,通过更为简单的coding就可以实现。今天将为大家介绍一个用于人脸检测、人脸识别和人脸特征检测的 JavaScript API,通过在浏览器中利用 tensorflow.js 进行人脸检测和人脸识别。大家不仅可以更快速学习这个,对有人脸识别技术
本文首发于政采云前端团队博客:基于 Web 端的人脸识别身份验证 https://www.zoo.team/article/web-face-recognition
我可以很激动地说,我们终于有可能在浏览器中运行人脸识别程序了!在这篇文章中,我会给大家介绍一个基于 TensorFlow.js 核心的 JavaScript 模块,这个模块叫做 face-api.js。为了实现人脸检测、人脸识别以及人脸特征点检测的目的,该模块分别实现了三种类型的卷积神经网络。
Tesseract.js是基于Tesseract的一个纯 Javascript 编程语言的 ocr 识别库,简单实用。支持包括中英文等100多种语言(包括中文)的图片和视频文字识别,自动文本方向和脚本检测,用于读取段落,单词和字符边界框的简单界面,底层封装了Tesseract OCR引擎来实现。
叮叮当,叮叮当,吊儿个郎当,一年一度的圣诞节到咯,我不由的回想起了前两年票圈被圣诞帽支配的恐惧。打开票圈全是各种@官方求帽子的:
新学期伊始,年度抢课大戏同步上映,学校的正方教务系统也迎来了前所未有的流量冲击。教务系统这个跑在 Windows 2003 的上古时期的 ASP.NET 程序的服务器自然也承受不住,在选课高峰期频频崩溃,从而也导致了用户登录的账户在选课期间频频掉线的问题。
TensorFlow是Google推出的开源机器学习框架,并针对浏览器、移动端、IOT设备及大型生产环境均提供了相应的扩展解决方案,TensorFlow.js就是JavaScript语言版本的扩展,在它的支持下,前端开发者就可以直接在浏览器环境中来实现深度学习的功能,尝试过配置环境的读者都知道这意味着什么。浏览器环境在构建交互型应用方面有着天然优势,而端侧机器学习不仅可以分担部分云端的计算压力,也具有更好的隐私性,同时还可以借助Node.js在服务端继续使用JavaScript进行开发,这对于前端开发者而言非常友好。除了提供统一风格的术语和API,TensorFlow的不同扩展版本之间还可以通过迁移学习来实现模型的复用(许多知名的深度学习模型都可以找到python版本的源代码),或者在预训练模型的基础上来定制自己的深度神经网络,为了能够让开发者尽快熟悉相关知识,TensorFlow官方网站还提供了一系列有关JavaScript版本的教程、使用指南以及开箱即用的预训练模型,它们都可以帮助你更好地了解深度学习的相关知识。对深度学习感兴趣的读者推荐阅读美国量子物理学家Michael Nielsen编写的《神经网络与深度学习》(英文原版名为《Neural Networks and Deep Learning》),它对于深度学习基本过程和原理的讲解非常清晰。
| 导语 手Q终端原生的图片预览器支持图片翻页和各种手势,这些用H5怎样实现?基于alloyFinger,本文将介绍在手Q动漫上的图片预览组件是如何做到媲美原生体验的手势效果,同时也介绍一下关于图片手势效果里隐含的一些细节。希望对要实现手势交互和动画的前端同学有所启发。 作者:朱晓华--腾讯web前端工程师 @IMWeb前端社区 一、实现效果 先来看实现效果。目前已经上线的图片预览组件的路径如下:手Q动态——动漫——社区——点击图片。 类比手Q的AIO里的图片预览器,支持的手势和功能分别如下: 手Q动漫
全方位对比vite和webpack 一. webpack原理 1. webpack打包过程 1.识别入口文件 2.通过逐层识别模块依赖。(Commonjs、amd或者es6的import,webpack都会对其进行分析。来获取代码的依赖) 3.webpack做的就是分析代码。转换代码,编译代码,输出代码 4.最终形成打包后的代码 2. webpack打包原理 1.先逐级递归识别依赖,构建依赖图谱 2.将代码转化成AST抽象语法树 3.在AST阶段中去处理代码 4.把AST抽象语法树变成浏览器可以识
我想大多数人和我一样,第一次听见“人工智能”这个词的时候都会觉得是一个很高大上、遥不可及的概念,特别像我这样一个平凡的前端,和大部分人一样,都觉得人工智能其实离我们很遥远,我们对它的印象总是停留在各种各样神奇而又复杂的算法,这些仿佛都是那些技术专家或者海归博士才有能力去做的工作。我也曾一度以为自己和这个行业没有太多缘分,但自从Tensorflow发布了JS版本之后,这一领域又引起了我的注意。在python垄断的时代,发布JS工具库不就是意味着我们前端工程师也可以参与其中?
一天,一个朋友给我发来一条链接https://ssr.163.com/cardmaker/#/,让我帮他看看怎么能获取到网页中所有的图片链接。我打开链接一看,页面的标题是阴阳师:百闻牌,下面有选择栏,再下边就是各种奇奇怪怪的看不懂的图片,我就问他这是什么呀?他说是一个游戏阴阳师里边的卡牌。怪不得我没听过,因为我不玩游戏,一个准程序猿不玩游戏一定有很多人不相信 ,但是确实如此,我从未玩过游戏 。 但是这并不影响我来分析网页得到图片,网页如下:
如果你现在正在阅读这篇文章,那么你可能已经阅读了我的介绍文章(JS使用者福音:在浏览器中运行人脸识别)或者之前使用过face-api.js。如果你还没有听说过face-api.js,我建议你先阅读介绍文章再回来阅读本文。
为原始图像通道数,p 为 Padding 填充维度,f 为卷积核大小,s 为步长
近段时间,做了一些关于对象发现的工作。主要内容是从图片中识别出液滴,并统计其数量。在这个过程中遇到了一些问题,也发现了几种相关的解决方案,在这里与大家分享一下。
GAN的发展系列一(CGAN、DCGAN、WGAN、WGAN-GP、LSGAN、BEGAN)
工地安全帽识别闸机联动开关算法通过yolov7系列网络模型深度学习算法,工地安全帽识别闸机联动开关算法工地安全帽识别闸机联动开关算法对施工人员的人脸、安全帽和反光衣进行识别,判断是否符合安全要求。只有当人脸识别成功且安全帽、反光衣齐全时,闸机才会打开允许施工人员进入。工地安全帽识别闸机联动开关算法目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种 one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。
【导读】CoreML是2017年苹果WWDC发布的最令人兴奋的功能之一。它可用于将机器学习整合到应用程序中,并且全部脱机。CoreML提供的机器学习 API,包括面部识别的视觉 API、自然语言处理 API 。苹果软件主管兼高级副总裁 Craig Federighi 在大会上介绍说,Core ML 致力于加速在 iPhone、iPad、Apple Watch 等移动设备上的人工智能任务,支持深度神经网络、循环神经网络、卷积神经网络、支持向量机、树集成、线性模型等。本文将带你从最初的数据处理开始教你一步一步的
写这篇文章的目的是给现有web开发的同事提供一些新的开发方向,认识新的js开发领域!
ABCNet(Adaptive Bezier Curve Network)是一个端到端的可训练框架,用于识别任意形状的场景文本。直观的pipeline如图所示。采用了单点无锚卷积神经网络作为检测框架。移除锚定箱可以简化我们任务的检测。该算法在检测头输出特征图上进行密集预测,检测头由4个步长为1、填充为1、3×3核的叠层卷积层构成。
王小新 编译自 Medium 量子位 出品 | 公众号 QbitAI Alexandre Attia是《辛普森一家》的狂热粉丝,在之前他已经写了一篇用卷积神经网络来识别20个辛普森人物的教程。给定一个人物图片后,该模型能返回该图片的所属类别,识别效果相当好,F1分值可达96%。 量子位翻译过这篇教程:刷剧不忘学CNN:TF+Keras识别辛普森一家人物 | 教程+代码+数据集 相关数据集已经在Kaggle上开源,但是该CNN模型每次只能识别单个人物,且不能指出该人物的图片位置。 作者不满足于只构建了一个简单
加油站抽烟烟火智能识别系统通过yolo+opencv网络模型图像识别分析技术,加油站抽烟烟火智能识别算法识别出抽烟和燃放烟火的情况,并发出预警信号以提醒相关人员,减少火灾风险。加油站抽烟烟火智能识别算法模型中的OpenCV基于C++实现,同时提供python, Ruby, Matlab等语言的接口。OpenCV-Python是OpenCV的Python API,结合了OpenCV C++API和Python语言的最佳特性。OpenCV-Python使用Numpy,这是一个高度优化的数据库操作库,具有MATLAB风格的语法。加油站抽烟烟火智能识别算法所有OpenCV数组结构都转换为Numpy数组。这也使得与使用Numpy的其他库(如SciPy和Matplotlib)集成更容易。OpenCV可以在不同的系统平台上使用,包括Windows,Linux,OS,X,Android和iOS。基于CUDA和OpenCL的高速GPU操作接口也在积极开发中。
抽烟行为监测识别系统通过python+yolov5网络深度学习技术,抽烟行为监测识别系统对画面中人员抽烟行为进行主动识别检测。在介绍Yolo算法之前,首先先介绍一下滑动窗口技术,这对我们理解Yolo算法是有帮助的。采用滑动窗口的目标检测算法思路非常简单,它将检测问题转化为了图像分类问题。其基本原理就是采用不同大小和比例(宽高比)的窗口在整张图片上以一定的步长进行滑动,然后对这些窗口对应的区域做图像分类,这样就可以实现对整张图片的检测了。
本文主要对insulation score 的提出与计算方法进行简要的介绍,并展示一个计算insulation score 的过程。
地址:http://v.youku.com/v_show/id_XMTI1MzUxNDY3Ng==.html
AI工衣工服智能识别系统通过yolov7网络模型深度学习算法,AI工衣工服智能识别系统对场人员穿戴进行实时不间断监测,AI工衣工服智能识别系统发现现场人员未按要求穿戴时,AI工衣工服智能识别系统立即抓拍告警。YOLO 的核心思想就是把目标检测转变成一个回归问题,利用整张图作为网络的输入,仅仅经过一个神经网络,得到bounding box(边界框) 的位置及其所属的类别。You Only Look Once说的是只需要一次CNN运算,Unified指的是这是一个统一的框架,提供end-to-end的预测,而Real-Time体现是Yolo算法速度快。
据说,当你在卢浮宫博物馆踱步游览的时候,你会感到油画中的蒙娜丽莎视线随你而动。这就是《蒙娜丽莎》这幅画的神奇之处。出于好玩,TensorFlow软件工程师Emily Xie最近开发了一个互动数字肖像,只需要浏览器和摄像头,你就能把会动的蒙娜丽莎带回家了!
毕业设计做了一个简单的研究下验证码识别的问题,并没有深入的研究,设计图形图像的东西,水很深,神经网络,机器学习,都很难。这次只是在传统的方式下分析了一次。 今年工作之后再也没有整理过,前几天一个家伙要这个demo看下,我把一堆东西收集,打包给他了,他闲太乱了,我就整理记录下。这也是大学最后的一次作业,里面有很多记忆和怀念。 这个demo的初衷不是去识别验证码,是把验证的图像处理方式用到其他方面,车票,票据等。 这里最后做了一个发票编号识别的的案例: 地址:http://v.youku.com/v_show
其中,bx、by表示汽车中点,bh、bw分别表示定位框的高和宽。以图片左上角为(0,0),以右下角为(1,1),这些数字均为位置或长度所在图片的比例大小。
最近我将OpenCV普通发布版本设计的面部识别算法添加到了opencv4nodejs,它是一个npm包,允许你在Node.js应用程序中使用OpenCV。今天,我们将看一下在OpenCVs的面部模块中
舒石 李林 编译整理 量子位 出品 | 公众号 QbitAI 人脸识别越来越常见,今年春运已经能刷脸进站,iPhone的相册就能用人脸分类照片,社交网站上能根据人脸标记照片。然而如同央视315提醒的那样,这项技术距离无懈可击还有一段距离。 比如说,一副成本1块钱的眼镜,就能骗过人脸识别的AI。 一个能够愚弄人脸识别AI的眼镜 来自卡内基梅隆大学(CMU)的研究人员表示,佩戴专门设计过的眼镜架,可以愚弄最先进的面部识别软件。一副眼镜,不单可以让佩戴者消失在人工智能识别系统之中,而且还能让AI把佩戴者误以为
我们来看一个最简单的例子:“边界检测(edge detection)”,假设我们有这样的一张图片,大小8×8:
车辆逆行识别检测系统通过opencv+yolo网络深度学习技术,车辆逆行识别检测系统对现场画面中车辆逆向行驶行为进行检测抓拍预警。若车辆逆行识别检测系统检测到道路上有车辆逆向行驶时,车辆逆行识别检测系统则抓拍预警。 OpenCV的全称是Open Source Computer Vision Library,是一个跨平台的计算机视觉处理开源软件库,支持与计算机视觉和机器学习相关的众多算法,以BSD许可证授权发行。OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序,该程序库也可以使用英特尔公司的IPP进行加速处理。
工厂明火烟雾视频监控识别系统 烟火自动识别预警通过python+yolo网络深度学习模型自动识别监控区域内的烟火,工厂明火烟雾视频监控识别系统 烟火自动识别预警发现火焰及烟雾系统可以实时发出预警信息并同步传给后台监控相关人员,有效的协助后台人员降低误报和漏报现象及时处理火灾危机,将火灾危险消灭在萌芽当中。
一、前言 本文主要介绍了tensorflow手写数字识别相关的理论,包括卷积,池化,全连接,梯度下降法。 二、手写数字识别相关理论 2.1 手写数字识别运算方法 图1 识别过程就像图片中那样,经过多次卷积和池化(又叫子采样),最后全连接就运算完成了。 2.2 卷积 卷积神经网络简介(Convolutional Neural Networks,简称CNN) 卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法。20世纪60年代,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经
占道经营流动商贩识别检测系统基于OpenCv+Yolo网络模型架构,对占道经营行为进行实时监测分析。当识别到流动商贩占道经营时,占道经营流动商贩识别检测OpenCv+Yolo网络模型立即抓拍并提示相关人员妥善处理。占道经营流动商贩识别检测提高城市道路的监管效率,产生强大的威慑作用,提升效率。
河道水位识别系统采用yolov5网络模型深度学习技术,河道水位识别系统自动识别水尺位置,河道水位识别系统通过AI图像识别技术将数字与水位线位置结合对别,即可识别出水尺读数。我们使用YOLO(你只看一次)算法进行对象检测。YOLO是一个聪明的卷积神经网络(CNN),用于实时进行目标检测。该算法将单个神经网络应用于完整的图像,然后将图像划分为多个区域,并预测每个区域的边界框和概率。这些边界框是由预测的概率加权的。要理解YOLO,我们首先要分别理解这两个模型。YOLO算法- YOLO算法是一种基于回归的算法,它不是选择图像中有趣的部分,而是预测整个图像中的类和包围框运行一次算法。要理解YOLO算法,我们首先需要了解实际预测的是什么。最终,我们的目标是预测一类对象和指定对象位置的边界框。
开发该项目的环境要求有Python,Tensorflow,OpenCV和NumPy等软件。源代码在这里。
| 导语 利用 Object.keys 取得对象所有属性的 key ,然后进行 map 操作是 JavaScript 开发者常用的方法。但你是否思考过 key list 是依据什么顺序排列的呢? 一、背景 近期维护辅导 App 内嵌 WebView 页面调 native 拍照上传的业务时,遇到一个诡异的兼容 Bug:iOS 端新提交的图片偶现顺序不一致的问题,但 Android 端一切正常。 首先简单梳理下拍照上传的关键业务逻辑: JS 侧用一个 Object 保存各个图片的信息,拍照上传后 native
| 导语 利用 Object.keys 取得对象所有属性的 key ,然后进行 map 操作是 JavaScript 开发者常用的方法。但你是否思考过 key list 是依据什么顺序排列的呢?
设备指示灯开关状态识别检测系统是基于yolo网络深度学习模型,设备指示灯开关状态识别检测系统对现场画面进行实时监测识别。自动识别仪表示数或开关状态。我们使用YOLO(你只看一次)算法进行对象检测。YOLO是一个聪明的卷积神经网络(CNN),用于实时进行目标检测。该算法将单个神经网络应用于完整的图像,然后将图像划分为多个区域,并预测每个区域的边界框和概率。这些边界框是由预测的概率加权的。要理解YOLO,我们首先要分别理解这两个模型。
这是专栏《AI初识境》的第11篇文章。所谓初识,就是对相关技术有基本了解,掌握了基本的使用方法。
AI检测人员工衣工服着装不规范识别系统基于opencv+yolo网络深度学习模型,AI检测人员工衣工服着装不规范识别系统对现场画面中人员着装穿戴实时监测分析。我们使用YOLO(你只看一次)算法进行对象检测。YOLO是一个聪明的卷积神经网络(CNN),用于实时进行目标检测。该算法将单个神经网络应用于完整的图像,然后将图像划分为多个区域,并预测每个区域的边界框和概率。这些边界框是由预测的概率加权的。要理解YOLO,我们首先要分别理解这两个模型。
工作玩手机识别监测系统通过YOLOV5网络深度学习算法模型对画面中人员玩手机行为进行实时监测,当工作玩手机识别监测系统识别到有人在玩手机行为时,无需人为干预工作玩手机识别监测系统立即抓拍存档触发告警。YOLO算法- YOLO算法是一种基于回归的算法,它不是选择图像中有趣的部分,而是预测整个图像中的类和包围框运行一次算法。要理解YOLO算法,我们首先需要了解实际预测的是什么。最终,我们的目标是预测一类对象和指定对象位置的边界框。
重新审视《 Network in network》中提出的全局平均 池化层(global average pooling),并阐明了它是如何通过图片标签就能让卷积神经网络具有卓越的定位能力。虽然这项技术以前被当做正则化训练的一种方法,但是我们发现它实际构建了一种通用的适用于各种任务的能定位的深度表示。尽管global average pooling很简单,我们仍然能够在2014年的ILSVRC物体定位比赛中得到37.1%的top-5错误率,与CNN的34.2%top-5错误率非常接近。我们证明了我们的网络能在各种任务中区分图像区域进行定位,尽管没有经过(定位)训练。
领取专属 10元无门槛券
手把手带您无忧上云