首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何选购最佳通配符SSL证书?

通配符证书选购攻略.jpg 通配符SSL证书优势 高扩展性 由于一张通配符SSL证书支持保护一个主域名及其所有二级子域名,换句话说,它可以同时确保多个子域名站点的安全,如您后续新增同级子域名,无需再额外付费...以上是通配符SSL证书普遍特点,那么如何选购最佳的通配符证书呢?需要注意哪些方面呢? 选购通配符证书注意事项 1....所以在选购通配符证书时,需要确认SSL证书的兼容性,保证证书被全球99%的浏览器、服务器、移动设备等兼容和信任。如果您的潜在用户不能从他们的设备上访问您的公司网站,毫无疑问,这将有损公司品牌形象。...所以,选购证书时,也要优先选择能随时提供专业客户服务和技术支持的供应商,以便及时解决您的问题。 4....那么,当您选购某一个CA下的通配符证书时,为避免造成不必要的损失,可以了解一下它的退款服务。 根据上面提到的四条注意事项,相信您能找到满意的通配符SSL证书,实现多个子域名的HTTPS安全加密。

7.5K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    AI框架跟计算什么关系?PyTorch如何表达计算

    最后简单地学习PyTorch如何表达计算。视频、文章、PPT都开源在:chenzomi12.github.ioAI系统化问题遇到的挑战在真正的 AI 工程化过程中,我们会遇到诸多问题。...而为了高效地训练一个复杂神经网络,AI 框架需要解决许多问题,例如:如何对复杂的神经网络模型实现自动微分?如何利用编译期的分析 Pass 对神经网络的具体执行计算进行化简、合并、变换?...如何规划基本计算 Kernel 在计算加速硬件 GPU/TPU/NPU 上高效执行?如何将基本处理单元派发(Dispatch)到特定的高效后端实现?...如何对通过神经网络的自动微分(反向传播实现)衍生的大量中间变量,进行内存预分配和管理?...为了使用用统一的方式,解决上述提到的挑战,驱使着 AI 框架的开发者和架构师思考如何为各类神经网络模型的计算提供统一的描述,从而使得在运行神经网络计算之前,能够对整个计算过程尽可能进行推断,在编译期间自动为深度学习的应用程序补全反向计算

    72530

    开发 | 除了性价比排名,如何选购深度学习 GPU

    这篇文章将深入讨论这个问题,聊聊有无必要入手英特尔协处理器 Xeon Phi,并将各主流显卡的性能、性价比制成一目了然的对比,供大家参考。 ? 先来谈谈选择 GPU 对研究深度学习的意义。...这之后,我继续探索如何在多卡环境玩深度学习。 我开发了一个全新的 8 bit 压缩技术,其模型并行化比起 32 bit 方法要高效得多,尤其是密集或全连接层。...为了对每块显卡在深度学习上的性能差异,给大家一个大致估计,我创建了一个简单的条形。读这张的姿势很简单。...这些性能对比,是从显卡参数以及计算评测(与深度学习同一级别的计算任务,比如密码挖掘)中获得。因此,这些只是大略估计。真实数字会有一点变化,但误差应该是极小的,并不会影响排序。...我需要处理的任务、如何进行试验,决定了对我而言的最佳选择,不管是 GTX 1070 还是 GTX 1080。 对于预算紧张的开发者而言,选择余地非常有限。

    6.7K60

    如何计算的最短路径?

    ., >, 其中当 时,有 ( , ) E; 路径的权重:w(p)= ; 加上权重的数学表示方式 边存在权重的:G(V,E,W) ,W是一个函数,作用于边,生成一个实数,即W(E)->R...对于有向来讲,假设有两个顶点,v1,v2,他们之间只有4种连接情况,依次类推 为什么会有负的权重? 比如社交网络上的喜欢可以看做是正的权重,比喜欢可以看做是负的权重 负权重的边带来什么问题?...)需要执行减少的总次数为1+2+4+...+ = ,也就是说,会执行的次数为指数级别 最短路径算法的一般思路问题二:负权重环 如果在源点到目标节点经过的路径上,经过环会导致权重减少,这个算法不会结束 如何获取有向无环...因此只有最后两个节点的路径值被更新 继续往右执行Relax 继续往右执行Relax 至此执行完毕,可以看到源点到所有节点的最短路径,从左到右分别是 ,0,2,6,5,3 如果图中有环,但是经过这个环不会导致权重减少,如何计算最短路径...不能,因为Bellman-Ford对于存在负权重的环的时候只会抛出异常,并没有计算路径,这实际是一个N-P的问题,即花的时间在指数级别或者之上 类似的,如果要求不经过负权重的环的情况下,计算最短路径,

    9710

    分布式计算如何实现?带你一窥计算执行计划

    的遍历 我们一般说的的算法是指在结构上进行迭代计算计算过程,例如有最短路径算法、最小生成树算法、PageRank算法等。 这些算法往往用于解决图上的特定一类问题。...然而,还有一类被广泛使用的'算法',它们也通过迭代计算处理,且在实际应用中有着广泛的应用,如金融风险管理、社交网络分析等。 它们就是遍历,又被称之为Traversal。...分布式遍历执行计划 数据的规模往往十分庞大,例如Github交互的规模可以到达数百TB规模,金融交易数据的规模可以达到万亿规模。如此复杂的无法通过单机完成遍历计算。...这里以蚂蚁集团开源的计算系统GeaFlow(品牌名为TuGraph-Analytics)为例,感兴趣的同学文末有开源地址。...图片 总结 本文介绍了GeaFlow计算引擎如何使用GQL查询语言进行走查询,并介绍了几类查询语句对应生成的计算执行计划。

    39720

    动态计算

    Pytorch底层最核心的概念是张量,动态计算以及自动微分。 本节我们将介绍 Pytorch的动态计算。...包括: 动态计算简介 计算图中的Function 计算和反向传播 叶子节点和非叶子节点 计算在TensorBoard中的可视化 一,动态计算简介 ?...Pytorch的计算由节点和边组成,节点表示张量或者Function,边表示张量和Function之间的依赖关系。 Pytorch中的计算是动态。这里的动态主要有两重含义。...第一层含义是:计算的正向传播是立即执行的。无需等待完整的计算创建完毕,每条语句都会在计算图中动态添加节点和边,并立即执行正向传播得到计算结果。 第二层含义是:计算在反向传播后立即销毁。...下次调用需要重新构建计算

    1.8K30

    如何利用“计算”实现大规模实时预测分析

    计算”是以“图论”为基础的对现实世界的一种“”结构的抽象表达,以及在这种数据结构上的计算模式。...一、何为“计算” 相比起“Hadoop、Spark”这种流行的大数据处理平台,说起“计算”,可能许多人还比较陌生。甚至有人会误把它当成专门进行“图像”处理的技术。...首先我们互联网上通常的定义来说明一下计算: “计算”是以“图论”为基础的对现实世界的一种“”结构的抽象表达,以及在这种数据结构上的计算模式。...Google为了应对计算的需求,推出了新的“计算框架”——Pregel。...如何利用不同的算法策略在同样的数据结构之上进行计算,而不是为了使用不同的算法需要修改和迁移海量的数据。需要我们采取一致性的数据结构。

    1.9K20

    回炉重造:计算

    有的,那就是我们需要说的计算 计算 我们借用「」的结构就能很好的表示整个前向和后向的过程。形式如下 ? 我们再来看一个更具体的例子 ? (这幅摘自Paddle教程。...白色是卷积核每次移动覆盖的区域,而蓝色区块,则是与权重W1经过计算的位置 可以看到W1分别和1, 2, 5, 6这四个数字进行计算 我们最后标准化一下 这就是权重W1对应的梯度,以此类推,我们可以得到...因此池化层需要将梯度传递到前面一层,而自身是不需要计算梯度优化参数。...静态 在tf1时代,其运行机制是静态,也就是「符号式编程」,tensorflow也是按照上面计算的思想,把整个运算逻辑抽象成一张「数据流」 ?...在静态图里我们可以优化到同一层级,乘法和加法同时做到 总结 这篇文章讲解了计算的提出,框架内部常见算子的反向传播方法,以及动静态的主要区别。

    2.8K20

    的排序计算和传播计算

    图片的排序计算一种流行的拓扑排序算法是Kahn算法,具体步骤如下:统计每个顶点的入度(即有多少个顶点指向该顶点)。将入度为0的顶点加入到一个队列中。...处理有环的拓扑排序问题:如果一个图存在环,那么无法进行拓扑排序。在Kahn算法中,如果最后还存在入度不为0的顶点,那么说明图中存在环。...的传播计算一种常见的传播模型是SIR模型,该模型描述了病毒传播的过程。下面是对SIR模型的简要介绍:SIR模型SIR模型将一个图表示为一个网络,网络中的节点代表个体,边表示节点之间的联系。...预测信息在网络中的传播路径可以基于以下的算法:广度优先搜索 (BFS):该算法从某个指定的节点出发,在图中逐级扩展搜索,以找到特定节点或满足特定条件的节点。...DFS通常比BFS更适用于探索的整个结构,而不仅仅是在最短路径上进行搜索。PageRank算法:PageRank算法是一种将节点排名按照重要性进行排序的算法。

    29961

    的社区计算和嵌入计算

    图片的社区计算社区发现是指在一个图中,将节点分割成若干个互不相交的子集,使得子集内节点之间的连接更加密集,而子集之间的连接较为稀疏。...以上是一种用于发现社区的算法,但并不是唯一的方法,还有许多其他的社区发现算法可以应用于不同的情况和结构。的嵌入计算嵌入是将一个映射到低维空间中的过程。...MDS可以用于对的邻接矩阵计算节点的向量表示。局部线性嵌入(LLE):LLE是一种非线性降维方法,它通过将每个节点表示为其邻居节点的线性组合的方式来进行降维。...Isomap可以用于计算图中节点的向量表示。图卷积神经网络(GCN):GCN是一种基于深度学习的嵌入方法,它通过在每个节点上应用卷积操作来学习节点的向量表示。...注意力网络(GAT):GAT是一种使用注意力机制的嵌入方法,它能够自适应地学习每个节点与其邻居节点之间的关系。GAT可以通过多层注意力操作来计算节点的向量表示。

    33192

    揭秘可视化探索工具 NebulaGraph Explore 是如何实现计算

    前言 在可视化探索工具 NebulaGraph Explorer 3.1.0 版本中加入了计算工作流功能,针对 NebulaGraph 提供了计算的能力,同时可以利用工作流的 nGQL 运行能力支持简单的数据读取...本文将简单分享下 NebulaGraph Explorer 中集成计算的基本实现原理。...计算可视化 对计算出的结果集,我们针对算法的类别进行了针对性的可视化展示。...Web 计算 除了以上介绍的计算工作流外,针对小数据量,重可视化分析的场景,NebulaGraph Explorer 额外提供了一套轻量级的 Web 端单机计算方案,针对画布中用户已探索出的数据进行实时计算...如下图所示,目前支持工作流中的所有算法,但由于部分不稳定算法(如 LPA), 分布单机及同步异步算法间的差异,少部分算法会和工作流计算结果有一些差异。

    1.1K20

    PyTorch: 计算与动态机制

    文章目录 计算 PyTorch的动态机制 计算 计算是用来描述运算的有向无环 计算有两个主要元素: 结点 Node 边 Edge 结点表示数据:如向量,矩阵,张量 边表示运算:如加减乘除卷积等...用计算图表示:y = (x+ w) * (w+1) a = x + w b = w + 1 y = a * b 计算与梯度求导 y = (x+ w) * (w+1) a = x + w...计算与梯度求导 y = (x+ w) * (w+1) 叶子结点 :用户创建的结点称为叶子结点,如 X 与 W is_leaf: 指示张量是否为叶子结点 叶子节点的作用是标志存储叶子节点的梯度,而清除在反向传播过程中的变量的梯度...根据计算搭建方式,可将计算分为动态和静态 动态 运算与搭建同时进行 灵活 易调节 例如动态 PyTorch: 静态 先搭建, 后运算 高效 不灵活。...静态 TensorFlow

    2.4K10
    领券