首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在两个Pandas Dataframe列之间查找匹配关键字之前和之后的单词,并在新列中返回

在两个Pandas DataFrame列之间查找匹配关键字之前和之后的单词,并在新列中返回。

首先,我们可以使用正则表达式来查找匹配关键字之前和之后的单词。然后,我们可以将找到的单词存储在一个新的列中。

以下是一种实现的方式:

代码语言:txt
复制
import pandas as pd
import re

def find_words_before_and_after(df, column1, column2, keyword):
    # 创建新列
    df['new_column'] = ""

    # 遍历DataFrame的行
    for index, row in df.iterrows():
        # 获取两个列的值
        text1 = row[column1]
        text2 = row[column2]
        
        # 使用正则表达式查找匹配关键字之前和之后的单词
        pattern = r"\b(\w*{}(?:\w*)?)\b".format(re.escape(keyword))
        matches1 = re.findall(pattern, text1)
        matches2 = re.findall(pattern, text2)
        
        # 拼接找到的单词
        words = " ".join(matches1 + matches2)
        
        # 将单词存储在新列中
        df.at[index, 'new_column'] = words

    return df

# 创建示例DataFrame
df = pd.DataFrame({'text1': ['Hello world', 'This is a test'], 'text2': ['World, hello', 'Test, test']})

# 调用函数查找匹配关键字之前和之后的单词
df = find_words_before_and_after(df, 'text1', 'text2', 'test')

# 打印结果
print(df)

这段代码会在示例DataFrame的基础上,通过调用find_words_before_and_after函数来查找text1text2列中,匹配关键字"test"之前和之后的单词,并将结果存储在新列new_column中。最后,打印出结果DataFrame。

请注意,这只是一种实现方式,根据具体需求,可能有其他更适合的方法或函数可以实现相同的功能。

(关键词:Pandas Dataframe, 列之间查找, 匹配关键字, 单词, 新列, 正则表达式)

相关搜索:在Pandas Dataframe列中查找某些单词,如果找到,则将它们添加到新列中Python,pandas,在匹配组的新列中的累积和Python -在dataframe列中查找以元音开头和结尾的单词Pandas Dataframe:创建一个新列,并在基于两个不同列的匹配行中插入一个值在Pandas DataFrame中插入新列和各自的值(按条件)如何使用pandas DataFrame的两个单独列中的数据在python中创建新列?在Pandas列中搜索list的元素,如果匹配,则将这些元素返回到新列如何过滤DataFrame,使其在Pandas中的列中保留特定单词列表之后的行?在列中查找值并在此基础上在pandas中创建新的数据帧查找两个pandas Dataframe和之间的差异,并将所有数据添加到新DF中在jQuery或Javascript中查找具有不同列的两个表之间的匹配数据计算两个日期之间不包括星期日的天数,并在R DataFrame中创建一个新列pandas帮助:在列中映射和匹配制表符分隔的字符串,并打印到新列中根据条件复制pandas中的行,并在现有行和新行之间拆分一列中的字符串使用一个查询在pandas dataframe中的两个列之间执行数学计算?在pandas中,如何在3个具有匹配行和列的独立数据帧之间建立相关矩阵?根据r中df1和df2之间的匹配,在df1中添加一个新列通过在选定的列上匹配来合并两个多维数组,并返回一个包含所有行和列的新数组根据两个连续的日期和产品减去产品值,在MySQL中返回一个名为产品差值的新列
相关搜索:
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

通宵翻译Pandas官方文档,写了这份Excel万字肝货操作!

在 Pandas 中,您使用特殊方法从/向 Excel 文件读取和写入。 让我们首先基于上面示例中的数据框,创建一个新的 Excel 文件。 tips.to_excel("....pandas 通过在 DataFrame 中指定单个系列来提供矢量化操作。可以以相同的方式分配新列。DataFrame.drop() 方法从 DataFrame 中删除一列。...提取第n个单词 在 Excel 中,您可以使用文本到列向导来拆分文本和检索特定列。(请注意,也可以通过公式来做到这一点。)...; 如果匹配多行,则每个匹配都会有一行,而不仅仅是第一行; 它将包括查找表中的所有列,而不仅仅是单个指定的列; 它支持更复杂的连接操作; 其他注意事项 1....查找和替换 Excel 查找对话框将您带到匹配的单元格。在 Pandas 中,这个操作一般是通过条件表达式一次对整个列或 DataFrame 完成。

19.6K20

PySpark SQL——SQL和pd.DataFrame的结合体

注:由于Spark是基于scala语言实现,所以PySpark在变量和函数命名中也普遍采用驼峰命名法(首单词小写,后面单次首字母大写,例如someFunction),而非Python中的蛇形命名(各单词均小写...,以及对单列进行简单的运算和变换,具体应用场景可参考pd.DataFrame中赋值新列的用法,例如下述例子中首先通过"*"关键字提取现有的所有列,而后通过df.age+1构造了名字为(age+1)的新列...:删除指定列 最后,再介绍DataFrame的几个通用的常规方法: withColumn:在创建新列或修改已有列时较为常用,接收两个参数,其中第一个参数为函数执行后的列名(若当前已有则执行修改,否则创建新列...select等价实现,二者的区别和联系是:withColumn是在现有DataFrame基础上增加或修改一列,并返回新的DataFrame(包括原有其他列),适用于仅创建或修改单列;而select准确的讲是筛选新列...,仅仅是在筛选过程中可以通过添加运算或表达式实现创建多个新列,返回一个筛选新列的DataFrame,而且是筛选多少列就返回多少列,适用于同时创建多列的情况(官方文档建议出于性能考虑和防止内存溢出,在创建多列时首选

10K20
  • Pandas中替换值的简单方法

    使用内置的 Pandas 方法进行高级数据处理和字符串操作 Pandas 库被广泛用作数据处理和分析工具,用于从数据中清理和提取特征。 在处理数据时,编辑或删除某些数据作为预处理步骤的一部分。...这可能涉及从现有列创建新列,或修改现有列以使它们适合更易于使用。为此,Pandas 提供了多种方法,您可以使用这些方法来处理 DataFrame 中所有数据类型的列。...Pandas 中的 replace 方法允许您在 DataFrame 中的指定系列中搜索值,以查找随后可以更改的值或子字符串。...也就是说,需要传递想要更改的每个值,以及希望将其更改为什么值。在某些情况下,使用查找和替换与定义的正则表达式匹配的所有内容可能更容易。...首先,如果有多个想要匹配的正则表达式,可以在列表中定义它们,并将其作为关键字参数传递给 replace 方法。然后,只需要显式传递另一个关键字参数值来定义想要的替换值。

    5.5K30

    Pandas 2.2 中文官方教程和指南(四)

    在写时复制的情况下,这两个关键字将不再必要。提案可以在这里找到。 数据输入/输出 从值构建 DataFrame 在电子表格中,值可以直接输入到单元格中。...在 pandas 中,你可以直接对整列进行操作。 pandas 通过在DataFrame中指定单独的Series提供矢量化操作。新列可以以相同的方式分配。...在 pandas 中,您可以直接对整个列进行操作。 通过在 DataFrame 中指定单独的 Series 来提供向量化操作。新列可以以相同的方式分配。...在 pandas 中,您可以直接对整列进行操作。 pandas 通过在DataFrame中指定单独的Series提供矢量化操作。新列可以以相同的方式分配。...如果匹配多行,则每个匹配将有一行,而不仅仅是第一个匹配 它将包括查找表中的所有列,而不仅仅是单个指定的列 它支持更复杂的连接操作 其他考虑事项 填充手柄 在一组特定的单元格中按照一定模式创建一系列数字

    31710

    2020年入门数据分析选择Python还是SQL?七个常用操作对比!

    而在pandas中,按照条件进行查找则可以有多种形式,比如可以将含有True/False的Series对象传递给DataFrame,并返回所有带有True的行 ?...在pandas中也有类似的操作 ? 查找空值 在pandas检查空值是使用notna()和isna()方法完成的。...在pandas中的等价操作为 ? 注意,在上面代码中,我们使用size()而不是count() 这是因为count()将函数应用于每一列,并返回每一列中非空记录的数量!...'value': np.random.randn(4)}) 内连接 内联接使用比较运算符根据每个表共有的列的值匹配两个表中的行,在SQL中实现内连接使用INNER JOIN SELECT * FROM...全连接 全连接返回左表和右表中的所有行,无论是否匹配,但并不是所有的数据库都支持,比如mysql就不支持,在SQL中实现全连接可以使用FULL OUTER JOIN SELECT * FROM df1

    3.6K31

    数据科学 IPython 笔记本 7.10 组合数据集:合并和连接

    Pandas 在pd.merge()函数和Series和Dataframe的相关join()方法中,实现了几个基本构建块。正如我们将看到的,这些可以让你有效地链接来自不同来源的数据。...这里我们将展示三种合并的简单示例,并在下面进一步讨论详细选项。 一对一连接 也许最简单的合并表达式是一对一连接,这在很多方面与“数据集的组合:连接和附加”中的按列连接非常相似。。...合并的结果是一个新的DataFrame,它组合了两个输入的信息。 请注意,每列中的条目顺序不一定得到保留:在这种情况下,employee列的顺序在df1和df2之间有所不同。...另外,请记住,合并一般会丢弃索引,除了在索引合并的特殊情况下(参见left_index和right_index关键字,之后讨论)。 多对一连接 多对一连接中,两个键列中的一个包含重复条目。...指定合并键 我们已经看到了pd.merge()的默认行为:它在两个输入之间查找一个或多个匹配的列名,并将其用作键。但是,通常列名称不能很好地匹配,而pd.merge()提供了各种处理它的选项。

    99520

    最全面的Pandas的教程!没有之一!

    它的名字来源是由“ Panel data”(面板数据,一个计量经济学名词)两个单词拼成的。简单地说,你可以把 Pandas 看作是 Python 版的 Excel。 ?...如上,如果 Pandas 在两个 Series 里找不到相同的 index,对应的位置就返回一个空值 NaN。...image 连接(Join) 如果你要把两个表连在一起,然而它们之间没有太多共同的列,那么你可以试试 .join() 方法。和 .merge() 不同,连接采用索引作为公共的键,而不是某一列。 ?...在 Pandas 里,主要用到 3 种方法: 首先是 .unique() 方法。比如在下面这个 DataFrame 里,查找 col2 列中所有不重复的值: ?...这返回的是一个新的 DataFrame,里面用布尔值(True/False)表示原 DataFrame 中对应位置的数据是否是空值。

    26K64

    嘀~正则表达式快速上手指南(下篇)

    在正则表达式里, 在+ 的左侧来匹配一个或多个模式实例。用\d+ 来匹配可以不用考虑日期的具体天数是一位还是两位数字。 之后的一个空格可以通过寻找空白字符的 \s 来解析。...表达式 \d+\s\w+\s\d+之所以能起作用,是因为精确的模式匹配约束着空格之间的内容。 接下来,我们做和之前相同的 None 值检查。 ?...但在开始之前,我们需要先理解方括号[ ] 在正则表达式中的含义, . [ ] 用于匹配所有被它括起来的内容....例如,查找从特定域名发来的邮件。但是,我们需要先学习一种新的正则表达式来完成精确查询工作。 管道符号, |, 用于查找位于它两边的任意字符。 如, a|b查找 a 或 b。...最后, 最外面的emails_df[] 返回 sender_email 列视图,该列包含需要匹配的目标字符串。干的漂亮! 我们也可以单个检视邮件。 只需要以下4步。

    4K10

    Pandas入门2

    image.png 5.2 DataFrame相加 对于DataFrame,对齐会同时发生在行和列上,两个DataFrame对象相加后,其索引和列会取并集,缺省值用NaN。...image.png 5.3 DataFrame和Series之间的运算 默认情况下,DataFrame和Series之间的算术运算会将Series的索引匹配到DataFram的列,然后沿着行一直向下广播...image.png 5.5 排序和排名 使用DataFrame对象的sort_valuse方法,需要两个参数:第1个参数by是根据哪一行或列排序; 第2个参数axis为0或1,默认为0,0为按列排序,...经过第6步之后,为什么原来的dataframe数据中Mjob和Fjob列的数据仍然是小写的?...简单说明原因,并修改原始dataframe中的数据使得Mjob和Fjob列变为首字母大写 函数操作不影响原数据,返回值的新数据要赋值给原数据,如下面代码所示: df[['Mjob','Fjob']] =

    4.2K20

    10个快速入门Query函数使用的Pandas的查询示例

    在开始之前,先快速回顾一下pandas -中的查询函数query。查询函数用于根据指定的表达式提取记录,并返回一个新的DataFrame。表达式是用字符串形式表示的条件或条件的组合。...PANDAS DATAFRAME(.loc和.iloc)属性用于根据行和列标签和索引提取数据集的子集。因此,它并不具备查询的灵活性。...在后端pandas使用eval()函数对该表达式进行解析和求值,并返回表达式被求值为TRUE的数据子集或记录。所以要过滤pandas DataFrame,需要做的就是在查询函数中指定条件即可。...最简单的答案是在条件之前使用not关键字或否定操作符〜 df.query("not (Quantity == 95)") 结果它包含数量不是95的所有行。...与数值的类似可以在同一列或不同列上使用多个条件,并且可以是数值和非数值列上条件的组合。 除此以外, Pandas Query()还可以在查询表达式中使用数学计算。

    4.4K20

    10快速入门Query函数使用的Pandas的查询示例

    在开始之前,先快速回顾一下pandas -中的查询函数query。查询函数用于根据指定的表达式提取记录,并返回一个新的DataFrame。表达式是用字符串形式表示的条件或条件的组合。...PANDAS DATAFRAME(.loc和.iloc)属性用于根据行和列标签和索引提取数据集的子集。因此,它并不具备查询的灵活性。...在多个条件过滤 一个或多个条件下过滤,query()的语法都保持不变 但是需要指定两个或多个条件进行过滤的方式 and:回在满足两个条件的所有记录 or:返回满足任意条件的所有记录 示例2 查询数量为95...最简单的答案是在条件之前使用not关键字或否定操作符〜 df.query("not (Quantity == 95)") 结果它包含数量不是95的所有行。...== 'Delivered'") 查询表达式包含了日期时间和文本列条件,它返回了符合查询表达式的所有记录 替换 上面的查询中都会生成一个新的df。

    4.5K10

    又一个Jupyter神器,操作Excel自动生成Python代码!

    使用Mito和使用Excel表格没什么太大区别,只需要掌握一些Mito的自定义函数即可,然后它会自动生成pandas处理表的代码。...合并数据集 Mito的合并功能可用于将数据集水平组合在一起。通过查找两个表关键列的匹配项,然后将这些匹配项数据组合到一行中。 首先,选择要合并在一起的两个Mito工作表。其次,选择合并的键。...最后,选择保留哪些列。 ? 数据透视表 首先,选择一个关键字对数据分组。然后,如果想进一步将组分层为单个单元格,继续选择列。最后,选择聚合的列和方法。 ?...筛选 Mito通过组合过滤器和过滤器组来提供强大的过滤功能。 过滤器是单个条件,对于该列中的每个单元格,其评估结果为true或false。 过滤器组是结合了布尔运算符的过滤器聚合。 ? 排序 ?...、Jake Diamond-Reivich和Nate Rush,他们是在搞数据分析的时候,萌生了想要制作Mito的想法。

    1.9K20

    Python 数据处理:Pandas库的使用

    1.Pandas 数据结构 要使用 Pandas,首先就得熟悉它的两个主要数据结构:Series和DataFrame。...由于需要执行一些数据整理和集合逻辑,所以drop方法返回的是一个在指定轴上删除了指定值的新对象: import pandas as pd obj = pd.Series(np.arange(5.),...DataFrame,其索引和列为原来那两个DataFrame的并集: print(df1 + df2) 如果DataFrame对象相加,没有共用的列或行标签,结果都会是空: import pandas...和Series之间的算术运算会将Series的索引匹配到DataFrame的列,然后沿着行一直向下广播: print(frame - series) 如果某个索引值在DataFrame的列或Series...在本例中,我们的目的是匹配DataFrame的行索引(axis='index' or axis=0)并进行广播。

    22.8K10

    Python科学计算之Pandas

    你将获得类似下图的表 ? 当你在Pandas中查找列时,你通常需要使用列名。这样虽然非常便于使用,但有时候,数据可能会有特别长的列名,例如,有些列名可能是问卷表中的某整个问题。...这里返回的结果和之前的一模一样,即一个包含我们所选列的数据的series。...在返回的series中,这一行的每一列都是一个独立的元素。 可能在你的数据集里有年份的列,或者年代的列,并且你希望可以用这些年份或年代来索引某些行。这样,我们可以设置一个(或多个)新的索引。 ?...然而必须指出的是,ix要比loc和iloc更快。 通常我们都希望索引是整齐有序地。我们可以在Pandas中通过调用sort_index来对dataframe实现排序。 ?...Pandas对此给出了两个非常有用的函数,apply和applymap。 ? 这会创建一个名为‘year‘的新列。这一列是由’water_year’列所导出的。它获取的是主年份。

    2.9K00

    5个例子介绍Pandas的merge并对比SQL中join

    本文的重点是在合并和连接操作方面比较Pandas和SQL。Pandas是一个用于Python的数据分析和操作库。SQL是一种用于管理关系数据库中的数据的编程语言。...两者都使用带标签的行和列的表格数据。 Pandas的merge函数根据公共列中的值组合dataframe。SQL中的join可以执行相同的操作。...这些操作非常有用,特别是当我们在表的不同数据中具有共同的数据列(即数据点)时。 ? pandas的merge图解 我创建了两个简单的dataframe和表,通过示例来说明合并和连接。 ?...在Pandas中,on参数被更改为“left”。在SQL中,我们使用“left join”而不是“join”关键字。 cust.merge(purc, on='id', how='left') ?...因此,purc中的列中填充了这些行的空值。 示例3 如果我们想要看到两个dataframe或表中的所有行,该怎么办?

    2K10

    整理了10个经典的Pandas数据查询案例

    在开始之前,先快速回顾一下Pandas中的查询函数query。查询函数用于根据指定的表达式提取记录,并返回一个新的DataFrame。表达式是用字符串形式表示的条件或条件的组合。...PANDAS中的DATAFRAME(.loc和.iloc)属性用于根据行和列标签和索引提取数据集的子集。因此,它并不具备查询的灵活性。...在后端Pandas使用eval()函数对该表达式进行解析和求值,并返回表达式被求值为TRUE的数据子集或记录。所以要过滤Pandas中的DataFrame,需要做的就是在查询函数中指定条件即可。...最简单的答案是在条件之前使用not关键字或否定操作符〜 df.query("not(Quantity == 95)") output 结果它包含数量不是95的所有行。...与数值的类似可以在同一列或不同列上使用多个条件,并且可以是数值和非数值列上条件的组合。 除此以外, Pandas中的query()方法还可以在查询表达式中使用数学计算。

    24120

    Pandas 学习手册中文第二版:1~5

    相关性 相关性是最常见的统计数据之一,直接建立在 Pandas DataFrame中。 相关性是一个单一数字,描述两个变量之间的关系程度,尤其是描述这些变量的两个观测序列之间的关系程度。...Series还会自动执行自身与其他 Pandas 对象之间的数据对齐。 对齐是 Pandas 的一项核心功能,其中数据是在执行任何操作之前按标签值匹配的多个 Pandas 对象。...结合在行和列上同时切片数据的功能,这种与数据帧中的数据进行交互和浏览的功能对于查找所需信息非常有效。 在本章中,我们将深入研究 Pandas DataFrame。...然后,pandas 将新的Series与副本DataFrame对齐,并将其添加为名为RoundedPrice的新列。 新列将添加到列索引的末尾。 .insert()方法可用于在特定位置添加新列。...-2e/img/00206.jpeg)] 删除列 可以使用数据帧的del关键字或.pop()或.drop()方法从DataFrame中删除列。

    8.3K10
    领券